Gate Dielectric Scaling to 2.0—1.0 nm: SiO2 and Silicon Oxynitride

  • S.-H. Lo
  • Y. Taur
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Gate Voltage Oxide Thickness Inversion Layer Tunneling Current Gate Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1.
    R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Physical Dimensions,” IEEE J. Solid-State Circuits SC-9, p. 256 (1974)CrossRefGoogle Scholar
  2. 5.2.
    S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thinoxide nMOSFET's,” IEEE Electron. Device Lett. 18, pp. 209–211 (1997)CrossRefGoogle Scholar
  3. 5.3.
    Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE 85, pp. 486–504 (1997)CrossRefGoogle Scholar
  4. 5.4.
    T. N. Nguyen, “Small-Geometry MOS Transistors: Physics and Modeling of Surface-and Buried-Channel MOSFETs,” PhD. Thesis, Stanford University, 1984Google Scholar
  5. 5.5.
    Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, New York, 1998Google Scholar
  6. 5.6.
    D.J. Frank, Y. Taur, and H.-S. Wong, “Generalized Scale Length for Two-Dimensional Effects in MOSFET's,” IEEE Electron. Device Lett. 19, p. 385 (1998)Google Scholar
  7. 5.7.
    Y. Taur, C.H. Wann, and D. J. Frank, “25 nm CMOS Design Considerations,” 1998 IEDM Technical Digest, p. 789Google Scholar
  8. 5.8.
    L. K. Han, S. Biesemans, J. Heidenreich, K. Houlihan, C. Lin, V. McGahay, T. Schiml, A. Schmidt, U. P. Schroeder, M. Stetter, C. Warm, D. Warner, R. Mahnkopf, and B. Chen, “A Modular 0.13 µm Bulk CMOS Technology for High Performance and Low Power Applications,” 2000 Symposium on VLSI Technology Digest of Technology Papers, pp.12–13Google Scholar
  9. 5.9.
    T. Ghani et al., “Scaling challenges and device design requirements for high performance sub-50nm gate length planar CMOS transistors,” in 2000 Symposium on VLSI Technology Digest of Technology papers, pp. 174–175Google Scholar
  10. 5.10.
    M. Mehrotra, J. Wu, A. Jain, T. Laaksonen, K. Kim, W. Bather, R. Koshy, J. Chen, J. Jacobs, V. Ukrainstev, L. Olsen, J. DeLoach, J. Mehigan, R. Agarwal, S. Walsh, D. Sekel, L. Tsung, M. Vaidyanathan, B. Trentman, K. Liu, S. Aur, R. Khamankar, P. Nicollian, Q. Jiang, Y. Xu, B. Campbell, P. Tiner, R. Wise, D. Scott, and M. Rodder, “60nm gate length dual-Vt CMOS for high performance applications,” 2002 Symposium on VLSI Technology Digest, pp. 124–125Google Scholar
  11. 5.11.
    F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the electric quantum limit,” Phys. Rev. 163, pp. 816–835, 1967CrossRefGoogle Scholar
  12. 5.12.
    F. Stern, “Self-consistent results for n-type Si inversion layers,” Phys. Rev. B 5, pp. 4891–4899 (1972)CrossRefGoogle Scholar
  13. 5.13.
    C. Moglestue, “Self-consistent calculation of electron and hole inversion charges at silicon-silicon dioxide interfaces,” J. App. Phys. 59, pp. 3175–3183 (1986)CrossRefGoogle Scholar
  14. 5.14.
    J. Suñé, P. Olivo, and B. Riccò, “Quantum-mechanical modeling of accumulation layers in MOS structure,” IEEE Trans. Electron Devices 39, pp. 1732–1739 (1992)CrossRefGoogle Scholar
  15. 5.15.
    C. Y. Wong, J. Y.-C. Sun, Y. Taur, C. S. Oh, R. Angelucci, and B. Bavari, “Doping of n+ and p+ polysilicon in a dual-gate process,” 1988 IEDM Tech. Dig., pp. 238–241Google Scholar
  16. 5.16.
    P. Habaš and S. Selberherr, “On the effect of non-degenerate doping of polysilicon gate in thin oxide MOS-devices-analytic modeling,” Solid-State Electron. 33, pp. 1539–1544, (1990)CrossRefGoogle Scholar
  17. 5.17.
    R. Rios and N. D. Arora, “Determination of ultra-thin gate oxide thicknesses for CMOS structures using quantum effects,” 1994 IEDM Technical Dig., pp. 613–616Google Scholar
  18. 5.18.
    S.-H. Lo, D. A. Buchanan, and Y. Taur, “Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultra-thin oxides,” IBM J. Research and Development 43, pp. 327–337 (1999)Google Scholar
  19. 5.19.
    D. A. Buchanan, “Scaling the gate dielectric: materials, integration, and reliability,” IBM J. Res. Develop. 43, pp. 245–264 (1999)Google Scholar
  20. 5.20.
    W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, “Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors,” IEEE Electron Device Lett. 20, pp. 179–181 (1999)CrossRefGoogle Scholar
  21. 5.21.
    K. J. Yang and C. Hu, “MOS capacitance measurements for high leakage thin dielectrics,” IEEE Trans. Electron Devices 46, pp. 1500–1501 (1999)CrossRefGoogle Scholar
  22. 5.22.
    M. S. Krishnan, L. Chang, T.-J. King, J. Bokor, and C. Hu, “MOSFETs with 9 to 13 Å,” 1999 IEDM Technical Dig., pp. 241–244Google Scholar
  23. 5.23.
    C.-H. Choi, J.-S. Goo, T.-Y. Oh, Z Yu, R. W. Dutton, A. Bayoumi, M. Cao, P. Vande Voorde, D. Vook, and C. H. Diaz, “MOS C-V characterization of ultrathin gate oxide thickness (1.3–1.8 nm),” IEEE Electron. Device Lett. 20, pp. 292–294 (1999)CrossRefGoogle Scholar
  24. 5.24.
    K. Yang, Y.-C. King, and C. Hu, “Quantum effect in oxide thickness determination from capacitance measurement,” 1999 Symp. VLSI Tech. Digest of Technical Papers, pp. 77–78Google Scholar
  25. 5.25.
    Z. A. Weinberg, “On tunneling in metal-oxide silicon structures,” J. Appl. Phys. 53, pp. 5052–5056 (1982)CrossRefGoogle Scholar
  26. 5.26.
    J. Maserjian, “Tunneling in thin MOS structures,” J. Vac, Sci, Technol. 11, pp. 996–1003, (1974)Google Scholar
  27. 5.27.
    J. G. Simmons, “Generalized formula for the electric tunneling effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, pp. 1793–1803 (1963)CrossRefGoogle Scholar
  28. 5.28.
    F. Rana, S. Tiwari, and D. A. Buchanan, “Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides,” Appl. Phys. Lett. 69, pp. 1104–1106 (1996)CrossRefGoogle Scholar
  29. 5.29.
    R. E. Collin, Field Theory of Guided Waves, 2nd edn, New York: IEEE Press, 1991Google Scholar
  30. 5.30.
    H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and Hiroshi Iwai, “Tunneling gate oxide approach to ultra-high current drive in small-geometry MOSFETs,” 1994 IEDM Technical Dig., pp. 593–596Google Scholar
  31. 5.31.
    M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicollian, T. Laaksonen, C. P. Chao, M. Mehrotra, C. Lee, S. Murtaza, S. Aur, “A 1.2 V, 0.1 mm Gate Length CMOS Technology: Design and Process Issues,” 1998 IEDM Technical Digest, pp. 623–626Google Scholar
  32. 5.32.
    T. P. Ma, “Making silicon nitride film a vaiable gate dielectric,” IEEE Trans. Electron Devices 45, pp. 680–690 (1998)CrossRefGoogle Scholar
  33. 5.33.
    H. Yang and G. Lucovsky, “Integration of ultrathin (1.6 ∼ 2.0 nm) RPECVD oxynitride gate dielectrics into dual poly-Si gate submicron CMOSFETs,” 1999 IEDM Technical Dig., pp. 245–248Google Scholar
  34. 5.34.
    B. Yu, H. Wang, Q. Xiang, J. X. An, J. Jeon, and M.-R. Lin, “Scaling towards 35nm gate length CMOS,” 2001 Symp. VLSI Technology Digest of Technical Papers, pp. 9–10Google Scholar
  35. 5.35.
    X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: dependence on Oxygen/Nitrogen content,” IEEE Electron Device Lett. 19, no. 6, pp. 207–209 (1998)CrossRefGoogle Scholar
  36. 5.36.
    D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P. Wong, “Device Scaling Limits of Si MOSFETs and Their Application Dependencies,” Proc. IEEE 89, pp. 259–288 (2001)CrossRefGoogle Scholar
  37. 5.37.
    R. Weis et al., “A highly cost efficient 8F2 DRAM cell with a double-gate vertical transistor device for 100 nm and beyond,” 2001 IEDM Technical Digest, p. 415Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S.-H. Lo
  • Y. Taur

There are no affiliations available

Personalised recommendations