Oxide Reliability Issues

  • R. Degraeve
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Oxide Thickness Interface Trap Density Oxide Breakdown IEDM Tech Random Telegraph Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1.
    M.A. Alam, J. Bude, A. Ghetti, “Field acceleration for oxide breakdown — Can an accurate anode hole injection model resolve the E vs. 1/E controversy?”, Proc. IRPS, pp. 21–26, 2000Google Scholar
  2. 4.2.
    M.A. Alam, B.E. Weir, P.J. Silverman, “A study of soft and hard breakdown — Part I: Analysis of statistical percolation conductance”, IEEE Trans. Electron Devices 49, no. 2, pp. 232–238, 2002CrossRefGoogle Scholar
  3. 4.3.
    M.A. Alam, B.E. Weir, P.J. Silverman, “A study of soft and hard breakdown — Part II: Principles of area, thickness, and voltage scaling”, IEEE Trans. Electron Devices 49, no. 2, pp. 239–2468, 2002CrossRefGoogle Scholar
  4. 4.4.
    M.A. Alam, B. Weir, J. Bude, P. Silverman, D. Monroe, “Explanation of soft and hard breakdown and its consequences for area scaling”, IEDM Tech. Dig., pp. 449–452, 1999Google Scholar
  5. 4.5.
    G.B. Alers, B.E. Weir, M.A. Alam, G.L. Timp, T. Sorch, “Trap assisted tunneling as a mechanism of degradation and noise in 2–5nm oxides”, Proc. IRPS, pp. 76–79, 1998Google Scholar
  6. 4.6.
    P.P. Apte, K.C. Saraswat, “Modeling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown”, Proc. IRPS, pp. 136–142, 1994Google Scholar
  7. 4.7.
    E. Avni, J. Shappir, “A model for silicon-oxide breakdown under high field and current stress”, J. Appl. Phys. 64, no. 2, pp. 743–748, 1988CrossRefGoogle Scholar
  8. 4.8.
    O. Briere, J.A. Chroboczek, and G. Ghibaudo, “Random telegraph signal in the quasi-breakdown current of MOS capacitors”, ESSDERC Proc., p. 759, 1996Google Scholar
  9. 4.9.
    O. Brière, A. Halimaoui, G. Ghibaudo, “Breakdown characteristics of ultra-thin gate oxides following field and temperature stresses”, Solid-State Electronics 41, no. 7, pp. 981–985, 1997CrossRefGoogle Scholar
  10. 4.10.
    S. Bruyere, E. Vincent, G. Ghibaudo, “Quasi-breakdown in ultrathin SiO2 films: occurrence, characterization and reliability assessment methodology”, IRPS Proc., pp. 48–54, 2000Google Scholar
  11. 4.11.
    D.A. Buchanan, S.-H. Lo, “Reliability and integration of ultra-thin gate dielectrics for advanced CMOS”, Microelectronic Engineering 36, no. 1–4, pp. 13–20, 1997CrossRefGoogle Scholar
  12. 4.12.
    J.D. Bude, B.E. Weir, P.J. Silverman, “Explanation of stress-induced damage in thin oxides”, IEDM Tech. Dig., pp. 179–182, 1998Google Scholar
  13. 4.13.
    E. Cartier, J.S. Tsang, M.V. Fischetti, D.A. Buchanan, “Light emission during during direct and Fowler-Nordheim tunneling in ultra thin MOS tunnel junctions”, Microelectronic Engineering 36, no. 1–4, pp. 103–106, 1997CrossRefGoogle Scholar
  14. 4.14.
    I.C. Chen, S. Holland, C. Hu, “A quantitative physical model for time-dependent breakdown in SiO2”, Proc. IRPS, pp. 24–31, 1985Google Scholar
  15. 4.15.
    I. C. Chen, S. Holland, C. Hu, “Hole trapping and breakdown in thin SiO2,” IEEE Electron Device Lett. 7, no. 3, pp. 164–167, 1986Google Scholar
  16. 4.16.
    I.C. Chen, S. Holland, K.K. Young, C. Chang, C. Hu, “Substrate hole current and oxide breakdown”, Appl. Phys. Lett. 49, no. 11, pp. 669–671, 1986CrossRefGoogle Scholar
  17. 4.17.
    I. C. Chen, S. Holland, C. Hu, “Electron-trap generation by recombination of electrons and holes in SiO2”, J. Appl. Phys. 61, no. 9, pp. 4544–4548, 1987CrossRefGoogle Scholar
  18. 4.18.
    C.-C. Chen, C.-Y. Chang, C.-H. Chien, T.-H. Huang, H.-C. Lin, M.-S. Liang, “Temperature-accelerated dielectric breakdown in ultrathin gate oxides”, Appl. Phys. Lett. 74, no. 24, pp. 3708–3710, 1999CrossRefGoogle Scholar
  19. 4.19.
    K.P. Cheung, J.I. Colonell, C.P. Chang, W.Y.C. Lai, C.T. Liu, R. Liu, and C.S. Pai, “Energy funnels-a new oxide breakdown model”, Symp. VLSI Technol. Dig., p. 145, 1997Google Scholar
  20. 4.20.
    K.P. Cheung, “A physics-based, unified gate-oxide breakdown model”, IEDM Tech. Dig., 1999Google Scholar
  21. 4.21.
    C.-L. Chiang, N. Khurana, “Imaging and detection of current conduction in dielectric films by emission microscopy”, IEDM Tech. Dig., pp. 672–675, 1986Google Scholar
  22. 4.22.
    F. Crupi, R. Degraeve, G. Groeseneken, T. Nigam, H.E. Maes, “On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers”, IEEE Trans. Elec. Dev. 45, No. 11, pp. 2329–2334, 1998CrossRefGoogle Scholar
  23. 4.23.
    J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, H.E. Maes, “A new quantitative model to predict SILC-related disturb characteristics in Flash E2PROM devices”, IEDM Tech. Dig., pp. 343–346, 1996Google Scholar
  24. 4.24.
    J. De Blauwe, R. Degraeve, R. Bellens, J. Van Houdt, Ph. Roussel, G. Groeseneken, H.E. Maes, “Study of DC Stress Induced Leakage Current (SILC) and its dependence on oxide nitridation”, Proc. of ESSDERC, pp. 361–364, 1996Google Scholar
  25. 4.25.
    R. Degraeve, B. Kaczer, G. Groeseneken, “Reliability: a possible showstopper for oxide thickness scaling?”, Semiconductor Science and Technology 15, no. 5, pp. 436–444, 2000CrossRefGoogle Scholar
  26. 4.26.
    R. Degraeve, B. Kaczer, F. Schuler, M. Lorenzini, D. Wellekens, P. Hendrickx, J. Van Houdt, L. Haspeslagh, G. Tempel, G. Groeseneken, “Statistical model for SILC and pre-breakdown current jumps in ultra-thin oxide layers”, IEDM Techn. Dig., pp. 121–124, 2001Google Scholar
  27. 4.27.
    R. Degraeve, F. Schuler, M. Lorenzini, D. Wellekens, P. Hendrickx, J. Van Houdt, L. Haspeslagh, G. Groeseneken, G. Tempel, “analytical model for failure rate prediction due to anomalous charge loss of flash memories”, IEDM Techn. Dig., pp. 699–702, 2001Google Scholar
  28. 4.28.
    R. Degraeve, G. Groeseneken, I. De Wolf, H.E. Maes, “Oxide and interface degradation and breakdown under medium and high field injection conditions: a correlation study,” Microelectronic Engineering (Proceedings INFOS) 28, no. 1–4, pp. 313–316, 1995CrossRefGoogle Scholar
  29. 4.29.
    R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, H.E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides”, IEDM Tech. Dig., pp. 863–866, 1995Google Scholar
  30. 4.30.
    R. Degraeve, Ph. Roussel, G. Groeseneken, H.E. Maes, “A new analytic model for the description of the intrinsic oxide breakdown statistics of ultrathin oxides”, Microelectronics and Reliability (Proc. ESREF) 36, no. 11/12, pp. 1639–1642, 1996Google Scholar
  31. 4.31.
    R. Degraeve, J.L. Ogier, R. Bellens, Ph. Roussel, G. Groeseneken, H.E. Maes, “A new model for the field dependence of intrinsic and extrinsic time-dependent dielectric breakdown”, IEEE Trans. Elec. Dev. 45, No. 2, pp. 472–481, 1998CrossRefGoogle Scholar
  32. 4.32.
    R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, Ph. Roussel, H.E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown”, IEEE Trans. Elec. Dev. 45, No. 4, pp. 904–911, 1998CrossRefGoogle Scholar
  33. 4.33.
    R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken, A. Naem, “Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability”, Symposium on VLSI Technology Digest of Technical papers, pp.59–60, 1999Google Scholar
  34. 4.34.
    M. Depas, T. Nigam, and M. Heyns, “Soft breakdown of ultra-thin gate oxide layers”, IEEE Trans. Electron Devices 43, no. 9, p. 1499, 1996CrossRefGoogle Scholar
  35. 4.35.
    M. Depas, M.M. Heyns, “Relation between trap creation and breakdown during tunneling current stressing of sub-3nm gate oxide”, Microelectronic Engineering 36, no. 1–4, pp. 21–24, 1997CrossRefGoogle Scholar
  36. 4.36.
    D. J. DiMaria, J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys. 65, no. 6, pp. 2342–2356, 1989CrossRefGoogle Scholar
  37. 4.37.
    D. J. DiMaria, D. Arnold, E. Cartier, “Impact ionization and positive charge formation in silicon dioxide films on silicon,” Appl. Phys. Lett. 60, no. 17, pp. 2118–2120, 1992CrossRefGoogle Scholar
  38. 4.38.
    D.J. DiMaria, E. Cartier, D. Arnold, “Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon”, J. Appl. Phys. 73, no. 7, pp. 3367–3384, 1993CrossRefGoogle Scholar
  39. 4.39.
    D. J. DiMaria, “Hole trapping, substrate currents, and breakdown in thin silicon dioxide films,” IEEE Electron. Device Lett 16, no. 5, pp. 184–186, 1995CrossRefGoogle Scholar
  40. 4.40.
    D. J. DiMaria, D. A. Buchanan, J. H. Stathis, R. E. Stahlbush, “Interface states induced by the presence of trapped holes near the silicon-silicon-dioxide interface,” J. Appl. Phys. 77, no. 5, pp. 2032–2040, 1995CrossRefGoogle Scholar
  41. 4.41.
    D.J. DiMaria, E. Cartier, D.A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J. Appl. Phys. 80, no. 1, pp. 304–317Google Scholar
  42. 4.42.
    D. J. DiMaria, “Dependence on gate work function of oxide charging, defect generation, and hole currents in metal-oxide-semiconductor structures,” J. Appl. Phys. 81, no. 7, pp. 3220–3226, 1997CrossRefGoogle Scholar
  43. 4.43.
    D. J. DiMaria, J.H. Stathis, “Explanation for the oxide thickness dependence of breakdown characteristics of metal-oxide-semiconductor structures,” Appl. Phys. Lett. 70, no. 20, pp. 2708–2710 1997.CrossRefGoogle Scholar
  44. 4.44.
    D. J. DiMaria, J.H. Stathis, “Non-Arrhenius temperature dependence of reliability in ultrathin silicon dioxide films,” Appl. Phys. Lett. 74, no. 12, pp. 1752–1754, 1999CrossRefGoogle Scholar
  45. 4.45.
    D.J. Dumin, J.R. Maddux, R.S. Scott, R. Subramoniam, “A model relating wearout to breakdown in thin oxides”, IEEE Trans. Electron Devices 41, no. 9, pp. 1570–1580, 1994CrossRefGoogle Scholar
  46. 4.46.
    K.R. Farmer, R. Saletti, R.A. Buhrman, “Current fluctuations and silicon wear-out in metal-oxide semiconductor tunnel diodes”, Appl. Phys. Lett. 52, no. 20, pp.1749–1751, 1988CrossRefGoogle Scholar
  47. 4.47.
    M. V. Fischetti, “Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode,” Physical Review B 31, no. 4, pp. 2099–2113, 1985CrossRefGoogle Scholar
  48. 4.48.
    A. Ghetti, J. Bude, G. Weber, “TBD prediction from meuasurements at low field and room temperature using a new estimator”, Symp. on VLSI Technology Dig. of Tech. Papers, 2000Google Scholar
  49. 4.49.
    A. Ghetti, E. Sangiorgi, J. Bude, T.W. Sorsch, G. Weber, “Low voltage tunneling in ultra-thin oxides: a monitor for interface states and degradation”, IEDM Tech. Dig., pp. 731–734, 1999Google Scholar
  50. 4.50.
    G. Groeseneken, H.E. Maes, N. Beltràn, R.F. De Keersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Devices, 31, no. 1, pp. 42–53, 1984Google Scholar
  51. 4.51.
    Y.D. He, H, Guan, M.F. Li, B. J. Cho, Z. Dong “Conduction mechanism under quasibreakdwon of ultrathin oxide”, Appl. Phys. Lett. 75, no. 16, pp. 2432–2434, 1999CrossRefGoogle Scholar
  52. 4.52.
    C. Hu, Q. Lu, “A unified gate oxide reliability model”, Proc. IRPS, pp. 47–51, 1999Google Scholar
  53. 4.53.
    D. Ielmini, A.S. Spinalli, A.L. Lacaiti, A. Modelli, “Statistical modeling of relibility and scaling projections for flash memories”, IEDM Tech. Dig., pp. 703–706, 2001Google Scholar
  54. 4.54.
    B. Kaczer, R. Degraeve, N. Pangon, G. Groeseneken, “The influence of elevated temperature on degradation and lifetime prediction of thin silicon-dioxide films”, IEEE Trans. Elec. Dev. 47, No. 7, pp. 1514–1521, 2000CrossRefGoogle Scholar
  55. 4.55.
    B. Kaczer, R. Degraeve, N. Pangon, T. Nigam, G. Groeseneken, “Investigation of temperature acceleration of thin oxide time-to-breakdown”, Microelectronic Engineering (INFOS 1999) 48, no. 1–4, pp. 47–50, 1999CrossRefGoogle Scholar
  56. 4.56.
    T.-K. Kang, M.-J. Chen, C.-H. Liu, Y.J. Chang, S.-K. Fan, “Numerical confirmation of inelastic trap-assisted tunneling (ITAT) as SILC mechanism”, IEEE Trans. Electron Devices 48, no. 10, pp. 2317–2321, 2001CrossRefGoogle Scholar
  57. 4.57.
    M. Kato, N. Myamoto, H. Hume, A. Satoh, T. Adachi, M. Ushiyama, K. Kimura, “Read-disturb degradation mechanism due to electron trapping in tunnel oxide for low-voltage flash memories, IEDM Tech. Dig., pp. 45–48, 1994Google Scholar
  58. 4.58.
    M. Kimura, “Field and temperature acceleration model for time-dependent dielectric breakdown”, IEEE Trans. Electron Devices 46, no. 1, pp. 220–229, 1999CrossRefGoogle Scholar
  59. 4.59.
    L. Larcher, A. Paccagnella, G. Ghidini, “A model of the stress induced laekage current in gate oxides”, IEEE Trans. Electron Devices 48, no. 2, pp. 285–288, 2001CrossRefGoogle Scholar
  60. 4.60.
    S.H. Lee, B.J. Cho, J.C. Kim, and S.H. Choi, “Quasi-breakdown of ultrathin gate oxide under high field stress”, IEDM Tech. Dig., pp. 605–608, 1994Google Scholar
  61. 4.61.
    C. Leroux, D. Blachier, O. Briere, G. Reimbold, “Light emission microscopy for thin oxide reliability analysis”, Microelectronic Engineering 36, no. 1–4, pp. 297–300, 1997CrossRefGoogle Scholar
  62. 4.62.
    M.F. Li, Y.D. He, S.G. Ma, B.-J. Cho, K.F. Lo, M.Z. Xu, “Role of hole fluence in gate oxide breakdwon”, IEEE Electron. Device Lett. 20, no. 11, pp. 586–588, 1999CrossRefGoogle Scholar
  63. 4.63.
    H.Z. Massoud, R. Deaton, “Percolation model for the extreme-value statistics of dielectric breakdown in rapid-thermal oxides”, Extended abstracts of the ECS Spring Meeting, pp. 287–288, 1994Google Scholar
  64. 4.64.
    J.M. McKenna, E.Y. Wu, S.-H. Lo, “Tunneling current characteristics and oxide breakdown in p+poly gate PFET capacitors”, Proc. IRPS, pp. 16–20, 2000Google Scholar
  65. 4.65.
    J.W. McPherson, D.A. Baglee, “Acceleration factors for thin gate oxide stressing”, Proc. IRPS, pp. 1–5, 1985Google Scholar
  66. 4.66.
    J.W. McPherson, V. Reddy, K. Banerjee, H. Le, “Comparison of E and 1/E TDDB models for SiO2 underlong-term/low-field test conditions”, IEDM Tech. Dig., pp. 171–174, 1998Google Scholar
  67. 4.67.
    J.W. McPherson, H.C. Mogul, “Disturbed bonding states in SiO2 thin-films and their impact on time-dependent dielectric breakdown”, Proc. IRPS, pp. 47–56, 1998Google Scholar
  68. 4.68.
    E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, X. Aymerich, “Switching behavior of the soft breakdown conduction characteristic in ultra-thin (<5nm) oxide MOS capacitor”, Proc. IRPS, pp. 42–46, 1998Google Scholar
  69. 4.69.
    R. Moazzama, C. Hu, “Stress-induced current in thin siliocon dioxide films”, IEDM Tech. Dig., pp. 139–142, 1992Google Scholar
  70. 4.70.
    A. Modelli, B. Ricco, “Electric Field and Current dependence of SiO2 Intrinsic Breakdown”, IEDM Tech. Dig., pp.148–151, 1984Google Scholar
  71. 4.71.
    C. Monsérié, C. Papadas, G. Ghibaudo, C. Gounelle, P. Mortini, G. Pananakakis, “Correlation between negative bulk oxide charge and breakdown, modeling and new criteria for dielectric quality evaluation”, Proc. IRPS, pp. 280–284, 1993Google Scholar
  72. 4.72.
    M. Nafría, J. Suñé, X. Aymerich, “Exploratory observations of post-breakdown conduction in polycrystalline-silicon and metal gated thin-oxide metal-oxide-semiconductor capacitors”, J. Appl. Phys. 73, no. 1, pp. 205–215, 1993CrossRefGoogle Scholar
  73. 4.73.
    P.E. Nicollian, W.R. Hunter, J.C. Hu, “Experimental evidence for voltage driven breakdown models in ultrathin gate oxides”, Proc. IRPS, pp. 7–15, 2000Google Scholar
  74. 4.74.
    E.H. Nicollian, J.R. Brews, “MOS Physics and Technology”, Wiley New York, 1982Google Scholar
  75. 4.75.
    P.E. Nicollian, M. Rodder, D.T. Grider, P. Chen, R.M. Wallace, S.V. Hattangady, “Low voltage stress-induced-leakage-current in ultrathin gate oxides”, Proc. IRPS, pp. 400–404, 1999Google Scholar
  76. 4.76.
    T. Nigam, R. Degraeve, G. Groeseneken, M.M. Heyns, H.E. Maes, “Constant current charge-to-breakdown: still a valid tool to study the reliability of MOS structures?”, Proc. IRPS, pp. 62–69, 1998Google Scholar
  77. 4.77.
    T. Nigam, R. Degraeve, G. Groeseneken, M.M. Heyns, H.E. Maes, “A fast and simple methodology for lifetime prediction of ultra-thin oxides”, Proc. IRPS, pp. 381–388, 1999Google Scholar
  78. 4.78.
    T.H. Ning, “Hot-electron emission from silicon into silicon dioxide,” Solid State Electronics 21, pp. 273–282, 1978CrossRefGoogle Scholar
  79. 4.79.
    Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Dynamic model of trapping-detrapping in SiO2”, J. Appl. Phys. 58, no. 6, pp. 2252–2261, 1985CrossRefGoogle Scholar
  80. 4.80.
    Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap generation and occupation dynamics in SiO2 under charge injection stress”, J. Appl. Phys. 60, no. 6, pp. 2024–2034, 1986CrossRefGoogle Scholar
  81. 4.81.
    A. Ohata, A. Toriumi, M. Iwase, and K. Natori, “Observation of random telegraph signals: anomalous nature of defects at the Si/SiO2 interface”, J. Appl. Phys. 68, p. 200, 1990CrossRefGoogle Scholar
  82. 4.82.
    K. Okada, “A model for anomalous leakage current in flash memories and its application for the prediction of retention characteristics”, IEDM Tech. Dig., pp. 707–710, 2001Google Scholar
  83. 4.83.
    K. Okada, S. Kawasaki, and Y. Hirofuji, “New experimental findings on stresss induced leakage current of ultra thin silicon dioxides”, Ext. Abst. of the 1994 SSDM, p. 565, 1994Google Scholar
  84. 4.84.
    K. Okada, “An experimental evidence to link the origins of ‘A-mode’ and ‘B mode’ stress induced leakage current”, Extended abstracts of the 1997 Int. Conf. on SSDM, pp. 92–93, 1997Google Scholar
  85. 4.85.
    K. Okada and K. Taniguchi, “Electrical stress-induced variable range hopping conduction in ultrathin silicon dioxides”, Appl. Phys. Lett. 70, p. 351, 1997CrossRefGoogle Scholar
  86. 4.86.
    K. Okada, H. Kubo, A. Ishinaga, K. Yoneda, “A new prediction method for oxide lifetime and its application to study dielectric breakdown mechanism”, VLSI Proc., pp. 158–159, 1998Google Scholar
  87. 4.87.
    K. Okada, K. Yoneda, “A consistent model for time dependent dielectric breakdown in ultrathin silicon oxides”, IEDM Tech. Dig., 1999Google Scholar
  88. 4.88.
    P. Olivo, T.N. Nguyen, B. Ricco, “High-Field-Induced Degradation in Ultra-Thin SiO2 Films”, IEEE Trans. Electron Devices 35, pp. 2259–2267, 1988CrossRefGoogle Scholar
  89. 4.89.
    N.K. Patel, A. Toriumi, “Stress-induced leakage current in ultrathin SiO2 films”, Appl. Phys. Lett. 64, no. 14, pp. 1809–1811, 1994CrossRefGoogle Scholar
  90. 4.90.
    G.M. Paulzen, “Qbd dependencies of ultrathin gate oxides on large area capcitors”, Microelectronic Engineering (Proceedings INFOS), 36, no. 1–4, pp. 321–324, 1997CrossRefGoogle Scholar
  91. 4.91.
    T. Pompl, H. Wurzer, M. Kerber, R.C.W. Wilkins, I. Eisele, “Influence of soft breakdown on nMOSFET device characteristics”, Proc. IRPS, pp. 82–87, 1999Google Scholar
  92. 4.92.
    M. Rasras, I. De Wolf, G. Groeseneken, B. Kaczer, R. Degraeve, H.E. Maes, “Photo-carrier generation as the origin of Fowler-Nordheim-induced substrate hole current in thin oxides”, IEDM Tech. Dig., pp. 465–468, 1999Google Scholar
  93. 4.93.
    B. Ricco, G, Gozzi, M. Lanzoni, “Modelling and simulation of stress-induced leakage current in ultrathin SiO2 films”, IEEE Trans. Electron Devices 45, no. 7, pp. 1554–1560, 1998CrossRefGoogle Scholar
  94. 4.94.
    P. Riess, G. Ghibaudo, G. Pananakakis, “Stress-induced leakage current generation kinetics based on anode hole injection and hole dispersive transport”, J. Appl. Phys. 87, no. 9, pp. 4626–4628, 2000CrossRefGoogle Scholar
  95. 4.95.
    P. Riess, G. Ghibaudo, G. Pananakakis, “Analysis of the stress-induced leakage current and related trap distribution”, Appl. Phys. Lett. 75, no. 24, pp. 3871–3873, 1999CrossRefGoogle Scholar
  96. 4.96.
    Ph. Roussel, R. Degraeve, G. Van den bosch, B. Kaczer, G. Groeseneken, “Accurate and robust noise-based trigger algorithm for soft breakdown detection in ultrathin gate dielectrics”, IEEE Trans. Device and Materials Reliability 1, no. 2, pp. 120–127, 2001CrossRefGoogle Scholar
  97. 4.97.
    E.F. Runnion, S.M. Gladstone IV, R.S. Scott, D.J. Dumin, L. Lie, J. Mitros, “Limitations on oxide thicknesses in FLASH EEPROM apllications”, Proc. IRPS, pp. 93–99, 1996Google Scholar
  98. 4.98.
    T. Sakura, H. Utsunomiya, Y. Kamakura, K. Taniguchi, “A detailed study of soft-and pre-soft-breakdowns in small geometry MOS structures”, IEDM Tech. Dig., pp. 183–186, 1998Google Scholar
  99. 4.99.
    H. Satake, A. Toriumi, “Substrate hole current generation and oxide breakdown in Si MOSFETs under Fowler-Nordheim electron tunneling injection”, IEDM Tech. Dig., pp. 337–340, 1993Google Scholar
  100. 4.100.
    H. Satake, A. Toriumi, “Common origin for stress-induced leakage current and electron trap generation in SiO2”, Appl. Phys. Lett. 67, no. 23, pp. 3489–3490, 1995CrossRefGoogle Scholar
  101. 4.101.
    H. Satake, S. Takagi, A. Toriumi, “Evidence of electron-hole cooperation in SiO2 dielectric breakdown”, Proc. IRPS, pp. 156–163, 1997Google Scholar
  102. 4.102.
    B. Schlund, C. Messick, J.S. Suehle, P. Chaparala, “A new physics-based model for time-dependent-dielectric-breakdown”, Proc. IRPS, pp. 84–92, 1996Google Scholar
  103. 4.103.
    K. F. Schuegraf, C. Hu, “Metal-oxide-semiconductor field-effect-transistor substrate current during Fowler-Nordheim tunneling stress and silicon dioxide reliability,” J. Appl. Phys. 76, no. 6, pp. 3695–3700, 1994CrossRefGoogle Scholar
  104. 4.104.
    K. F. Schuegraf, C. Hu, “Reliability of thin SiO2,” Semicond. Sci. Technol. 9, pp. 989–1004, 1994CrossRefGoogle Scholar
  105. 4.105.
    K.F. Schuegraf, C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapollation”, IEEE Trans. Electron Devices 41, no. 5, pp. 761–767, 1994CrossRefGoogle Scholar
  106. 4.106.
    F. Schuler, G. Tempel, H. Melzner, M. Jacob, P. Hendrickx, D. Wellekens, J. Van Houdt, “Failure rate prediction and accelerated detection of anomalous charge loss in flash memories by using an analytic transient physics-based charge loss model”, Jpn. J. Appl. Phys. 41, pp. 2650–2653, 2002CrossRefGoogle Scholar
  107. 4.107.
    R.S. Scott, N.A. Dumin, T.W. Hughes, D.J. Dumin, B.T. Moore, “Properties of high voltage stress generated traps in thin silicon oxides”, Proc. IRPS, pp. 131–141, 1995Google Scholar
  108. 4.108.
    N. Shiono, M. Itsumi, “A Lifetime Projection Method Using Series Model and Acceleration Factors for TDDB failures of Thin Gate Oxides”, Proc. IRPS, pp. 1–6, 1993Google Scholar
  109. 4.109.
    B.I. Shklosskii, A.L. Efros, “Electronic Properties of Doped Semiconductors”, Berlin, Springer-Verlag, 1984Google Scholar
  110. 4.110.
    J.H. Stathis, A Vayshenker, P.R. Varakamp, E.Y. Wu, C. Montrose, J. McKenna, D.J. DiMaria, L.-K. Han, E. Cartier, R.A. Wachnik, B.P. Linder, “Breakdown meusurements of ultra-thin SiO2 at low voltage”, Symp. on VLSI Technology Dig. of Tech. Papers, 2000Google Scholar
  111. 4.111.
    J.H. Stathis, “Quantitative model of the thickness dependence of breakdown in ultrathin oxides”, Microelectronics Enigeering 36, no. 1–4, pp.325–328, 1997CrossRefGoogle Scholar
  112. 4.112.
    J.H. Stathis, D.J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage”, IEDM Tech. Dig., pp. 167–170, 1998Google Scholar
  113. 4.113.
    R. Subramoniam, R.S. Scott, D.J. Dumin, “A Statistical Model of Oxide Breakdown Based on a Physical Description of Wearout”, IEDM Tech. Dig., pp. 135–138, 1992Google Scholar
  114. 4.114.
    J.S. Suehle, P. Chaparala, C. Messick, W.M. Miller, K.C. Boyko, “Field and temperature acceleration of time-dependent dielectric breakdown in intrinsic thin SiO2”, Proc. IRPS, pp. 120–125, 1994Google Scholar
  115. 4.115.
    J. Suñé, G. Mura, E. Miranda, “Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms?”, IEEE Electron. Device Lett. 21, no. 4, pp. 167–169, 2000CrossRefGoogle Scholar
  116. 4.116.
    J. Suñé, I. Placencia, N. Barniol, E. Farrés, F. Martín, X. Aymerich, “On the breakdown statistics of very thin SiO2 films”, Thin Solid Films 185, pp. 347–362, 1990CrossRefGoogle Scholar
  117. 4.117.
    J. Suñé, E. Miranda, M. Nafría, X. Aymerich, “Point contact conduction at the oxide breakdown of MOS devices”, IEDM Tech. Dig., pp. 191–194, 1998Google Scholar
  118. 4.118.
    J. Suñé, E. Miranda, M. Nafría, X. Aymerich, “Modeling the breakdown spots in silicon dioxide films as point contacts”, Appl. Phys. Lett. 75, no. 7, pp. 959–961, 1999CrossRefGoogle Scholar
  119. 4.119.
    S. Takagi, N. Yasuda, A Toriumi, “Experimental evidence of inelastic tunneling in stress-induced laekage current”, IEEE Trans. Electron Devices 46, no. 2, pp. 335–341, 1999CrossRefGoogle Scholar
  120. 4.120.
    A. Teramoto, K. Kabayashi, Y. Matsui, M. Hirayama, A. Yasuoka, “Excess currents induced by hot-hole injection and F-N stress in thin SiO2 films”, Proc. IRPS, pp. 113–116, 1996Google Scholar
  121. 4.121.
    A Teramoto, H. Umeda, K. Azamawari, K. Kobayashi, K. Shiga, J. Komori, Y. Ohno, H. Miyoshi, “Study of oxide breakdown under very low electric field”, Proc. IRPS, pp. 66–71, 1999Google Scholar
  122. 4.122.
    H. Uchida, T. Ajika, “Electron trap center generation due to hole trapping in SiO2 under Fowler-Nordheim tunneling conditions”, Appl. Phys. Lett. 51, no. 87, pp. 433–435, 1987CrossRefGoogle Scholar
  123. 4.123.
    N. Vandewalle, M. Ausloos, M. Houssa, P.W. Mertens, M.M. Heyns, “Non-Gaussian behavior and anticorrelations in ultrathin gate oxides after soft breakdown”, Appl. Phys. Lett. 74, no. 11, pp. 1579–1581, 1999CrossRefGoogle Scholar
  124. 4.124.
    E. Vincent, C. Papadas, C. Riva, F. Pio, G. Ghibaudo, “On the charge built-up mechanisms in very thin insulator layers”, Proc. ESSDERC, pp. 495–498, 1994Google Scholar
  125. 4.125.
    E. Vincent, C. Papadas, G. Ghibaudo, “Electric field dependence of charge build-up mechanisms and breakdown phenomena in thin oxides during Fowler-Nordheim injection”, Proc. ESSDERC, pp. 767–770, 1996Google Scholar
  126. 4.126.
    R.P. Vollertsen, “A new approach of statistical modelling the time dependent oxide breakdown”, ESREF, pp. 97–100, 1992Google Scholar
  127. 4.127.
    T. Wang, N.-K. Zous, J.-L. Lai, C. Huang, “Hot hole stress induced leakage current (SILC) transient in tunnel oxides”, IEEE Electron. Device Lett. 19, no. 5, pp. 148–150, 1998CrossRefGoogle Scholar
  128. 4.128.
    Z.A. Weinberg, M.V. Fischetti, “SiO2-induced substrate current and its relation to positive charge in field-effect transitors”, J. Appl. Phys. 59, no. 3, pp. 824–832, 1986CrossRefGoogle Scholar
  129. 4.129.
    B.E. Weir, M.A. Alam, J.D. Bude, P.J. Silverman, A. Ghetti, F. Baumann, P. Diodato, D. Monroe, T. Sorsch, G. L. Timp, Y. Ma, M.M. Brown, A. Hamad, D. Hwang, P. Mason, “Gate oxide reliability projection to the sub-2nm regime”, Semicond. Sci. Technol. 15, pp. 455–461, 2000CrossRefGoogle Scholar
  130. 4.130.
    B.E. Weir, P.J. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers, T.W. Sorsch, G.L. Timp, F. Baumann, C.T. Liu, Y. Ma, D. Hwang, “Ultrathin gate dielectrics: they break down, but do they fail?”, IEDM Tech. Dig., pp. 73–76, 1997Google Scholar
  131. 4.131.
    B.E. Weir, P.J. Silverman, M.A. Alam, F. Baumann, D. Monroe, A. Ghetti, J.D. Bude, G.L. Timp, A. Hamad, T.M. Oberdick, N.X. Zhao, Y. Ma, M.M. Brown, D. Hwang, T.W. Sorsch, J. Madic, “Gate oxieds in 50nm devices: thickness uniformity improves projected reliability”, IEDM Tech. Dig., pp. 437–440, 1999Google Scholar
  132. 4.132.
    D.R. Wolters, J.F. Verwey, Instabilities in Silicon Devices. Elsevier Science Publishers. B.V. (North-Holland), 1986, Chap. 6, pp. 332–335Google Scholar
  133. 4.133.
    E.Y. Wu, J.H. Stathis, L.-K. Han, “Ultra-thin oxide reliability for ULSI applications”, Semicond. Sci. Technol. 15, no. 5, pp. 425–435, 2000CrossRefGoogle Scholar
  134. 4.134.
    E. Wu, E. Nowak, J. Aitken, W. Abadeer, L.K. Han, S. Lo, “Structural dependence of dielectric breakdown in ultra-thin gate oxides and its relationship to soft breakdown modes and device failure”, IEDM Tech. Dig., pp. 187–190, 1998Google Scholar
  135. 4.135.
    J. Wu, L.F. Register, E. Rosenbaum, “Trap-assisted tunnelling current through ultra-thin oxide”, Proc. IRPS, pp. 389–395, 1999Google Scholar
  136. 4.136.
    A. Yassine, H.E. Nariman, K. Olasupo, “Field and temperature dependence of TDDB of ultrathin gate oxide”, IEEE Electron. Device Lett. 20, no. 8, pp. 390–392, 1999CrossRefGoogle Scholar
  137. 4.137.
    N.-K. Zous, T. Wang, C.-C. Yeh, C.W. Tsai, “Transient effects of positive oxide charge on stress-induced leakage current in tunnel oxides”, Appl. Phys. Lett. 75, no. 5, pp. 734–736, 1999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R. Degraeve

There are no affiliations available

Personalised recommendations