Advanced MOS-Devices

  • J. Bokor
  • T.-J. King
  • J. Hergenrother
  • J. Bude
  • D. Muller
  • T. Skotnicki
  • S. Monfray
  • G. Timp
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Gate Oxide Gate Length Gate Leakage IEDM Tech Transmission Electron Micrograph Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 21.1.
    G.E. Moore, IEDM Tech. Dig., 11–13 (1975)Google Scholar
  2. 21.2.
    International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2000 updateGoogle Scholar
  3. 21.3.
    D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt and G. Timp, The Electronic Structure at the atomic scale of ultra-thin gate oxides, Nature 399, pp. 758–761 (June 24, 1999)Google Scholar
  4. 21.4.
    D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur and H.-S.P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proceedings of the IEEE 89, p. 259 (2001)CrossRefGoogle Scholar
  5. 21.5.
    R. Chau et al., “A 50nm Depleted-Substrate CMOS Transistor (DST),” IEDM Tech Dig, pp. 621–624 (2001); T. Matsumoto et al., 70nm SOICMOS of 135 GHz fmax with Dual Offset-implanted Source-Drain Extension Structure for RF/Analog and Logic Applications,” IEDM Tech. Digest, pp. 219–222 (2001)Google Scholar
  6. 21.6.
    H.-S.P Wong, D.J. Frank and P.M. Solomon, “Device Design Considerations for Double-Gate, Ground-Plane, and Single-Gated Ultra-Thin SOI MOSFET's at the 25nm Channel Length Generation,” IEDM Tech. Digest, p. 407 (1998)Google Scholar
  7. 21.7.
    L. Chang, S. Tang, T.-J. King, J. Bokor and C. Hu, “Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs,” IEDM Technical Digest, p. 719 (2000)Google Scholar
  8. 21.8.
    H.-S. Wong, D.J. Frank, Y. Taur and J.M.C. Stork, “Design and performance considerations for sub-0.1 μm double-gate SOI MOSFET's,” IEDM Technical Digest, p. 747 (1994)Google Scholar
  9. 21.9.
    L. Chang and C. Hu, “MOSFET scaling into the 10 nm regime,” Superlattices and Microstructures 28, p. 351 (2000)CrossRefGoogle Scholar
  10. 21.10.
    D.J. Frank, S.E. Laux and M.V. Fischetti, “Monte Carlo Simulation of a 30nm Dual-Gate MOSFET: How Short Can Si Go?” IEDM Technical Digest, p. 553 (1992)Google Scholar
  11. 21.11.
    A.G. Sabnis and J.T. Clemens, IEDM Tech. Digest, p. 18 (1979); S. Takagi et al., IEEE Trans. Electron Dev. 41, 2357 (1994)Google Scholar
  12. 21.12.
    D. Essenic et al., “An Experimental Study of Low field electron mobility in Double-gate, ultra-thin SOI MOSFETs,” IEDM Tech. Digest, pp 445–448 (2001); F. Balestra et al., IEEE Electron Dev. Lett., p. 410 (1987); S. Venkatesan et al., IEEE Electron Dev. Lett., p. 44 (1992)Google Scholar
  13. 21.13.
    A.B. Glaser and G.E. Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley, Reading MA, May 1979, p. 786; D.L. Miller, J.X. Przybysz, and J.H. Kang, IEEE Trans. Applied Superconductivity 3, 2728 (1993)Google Scholar
  14. 21.14.
    D.M. Tennant et al., “Progress toward a 30nm silicon MOS gate technology,” J. Vac. Sci. Technol. B 17(6), pp. 3158–3163 (Nov/Dec 1999)CrossRefGoogle Scholar
  15. 21.15.
    M. Lundstrum, IEDM Technical Digest, p. 387 (1996); F. Assad, Z. Ren, D. Vasileska, S. Datta and M. Lundstrom, IEEE Trans. Electron Dev. 47, pp. 232–240 (2000)Google Scholar
  16. 21.16.
    G. Timp et al., “The Ballistic Nanotransistor,” IEDM Technical Digest, p. 55 (1999)Google Scholar
  17. 21.17.
    J.D. Bude, “MOSFET Modeling into the Ballistic Regime,” 2000 International Conference on Simulation of Semiconductor Processes and Devices 2000, SISPAD 2000, pp. 23–26 (2000)Google Scholar
  18. 21.18.
    B. Yu, H. Wang, A. Joshi et al., “15nm Gate Length Planar CMOS Transistor,” IEDM Tech. Digest, pp. 937–939 (2001)Google Scholar
  19. 21.19.
    F.H. Baumann et al., Gate stack and silicide issues in silicon processing, Ed. L.A. Clevenger, S.A. Campbell, P.R. Besser, S.B. Herner, J. Kittl., MRS Proceedings 611, C4.1.1–C4.1.12 (2000)Google Scholar
  20. 21.20.
    H. Akatsu and I. Ohdomari, Appl. Surf. Science 41/42, p. 357 (1989)CrossRefGoogle Scholar
  21. 21.21.
    T. Yamanaka et al., IEEE Electron Dev. Lett. 17(4), p. 178 (1996)CrossRefGoogle Scholar
  22. 21.22.
    G. Mazzoni et al., “On Surface Roughness-limited Mobility in Highly Doped nMOSFETs,” Trans. Electron. Dev. 46(7), pp. 1423–1427 (July 1999)CrossRefGoogle Scholar
  23. 21.23.
    S.M. Goodnick et al., Phys. Rev. B 32(12), p. 8171 (1985)CrossRefGoogle Scholar
  24. 21.24.
    J. Yu et al, “The role of interface roughness scattering in inversion layer mobility,” submitted to the 2002 Silicon Nanoelectronics WorkshopGoogle Scholar
  25. 21.25.
    J.M. Hergenrother, D. Monroe, F.P. Klemens, A. Kornblit, G.R. Weber et al., “The Vertical Replacement-Gate (VRG) MOSFET: A 50-nm vertical MOSFET with lithography-independent gate length,” IEDM Tech. Digest, p. 75 (1999)Google Scholar
  26. 21.26.
    S.-H. Oh, J.M. Hergenrother, T. Nigam, D. Monroe, F.P. Klemens et al., “50nm Vertical Replacement-Gate (VRG) pMOSFETs,” IEDM Tech. Digest, p. 65 (2000)Google Scholar
  27. 21.27.
    D. Monroe and J. Hergenrother, “The Vertical Replacement-Gate (VRG) process for scalable general-purpose complementary logic,” ISSCC Tech. Digest, p. 134 (2000)Google Scholar
  28. 21.28.
    J.M. Hergenrother, G.D. Wilk, T. Nigam, F.P. Klemens, D. Monroe et al., “50nm Vertical Replacement-Gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 Gate Dielectrics,” IEDM Tech. Digest, p. 51 (2001)Google Scholar
  29. 21.29.
    P. Kalavade, J.M. Hergenrother, T.W. Sorsch, S. Aravamudhan, M.K. Bude et al., “The Ultrathin-Body Vertical Replacement-Gate MOSFET: A Highly-Scalable, Fully-Depleted MOSFET with a Deposition-Defined Ultrathin (< 15 nm) Silicon Body,” submitted to the 2002 Silicon Nanoelectronics WorkshopGoogle Scholar
  30. 21.30.
    L. Kang, K. Onishi, T. Jeon, B.-H. Lee, C. Kang et al., “MOSFET devices with poly-silicon on single-layer HfO2 high-κ dielectrics,” IEDM Tech. Digest, p. 35 (2000)Google Scholar
  31. 21.31.
    D. Barlage, R. Arghavani, G. Dewey, M. Doczy, B. Doyle et al., “High-frequency response of 100nm integrated CMOS transistors with high-k gate dielectrics,” IEDM Tech. Digest, p. 231 (2001)Google Scholar
  32. 21.32.
    E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kumar, D. DiMaria et al., “Ultrathin high-k gate stacks for advanced CMOS devices,” IEDM Tech. Digest, p. 451 (2001)Google Scholar
  33. 21.33.
    C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip et al., “80nm poly-Si gate CMOS with HfO2 gate dielectric,” IEDM Tech. Digest, p. 651 (2001)Google Scholar
  34. 21.34.
    K. Onishi, L. Kang, R. Choi, E. Dharmarajan, S. Gopalan et al., “Dopant penetration effects on poly-silicon gate HfO2 MOSFETs,” VLSI Symp. Tech. Digest, p. 131 (2001)Google Scholar
  35. 21.35.
    S.J. Lee, H.F. Luan, C.H. Lee, T.S. Jeon, W.P. Bai, Y. Senzaki, D. Roberts and D.L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” VLSI Symp. Tech. Digest, p. 133 (2001)Google Scholar
  36. 21.36.
    R. Choi, C.S. Kang, B.H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan and J.C. Lee, “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” VLSI Symp Tech Digest, p. 15 (2001)Google Scholar
  37. 21.37.
    D.A. Buchanan, E.P. Gusev, E. Cartier, H. Okorn-Schmidt, K. Rim et al., “80nm poly-silicon gated n-FETs with ultra-thin Al2O3 gate dielectrics for ULSI applications,” IEDM Tech Digest, p. 223 (2000)Google Scholar
  38. 21.38.
    T. Suntola, “Atomic layer epitaxy,” Material Science Reports 4, p. 261 (1989)CrossRefGoogle Scholar
  39. 21.39.
    D. Hisamoto, T. Kaga, Y. Kawamoto and E. Takeda, “A fully depleted lean-channel transistor (DELTA) — a novel vertical ultra thin SOI MOSFET,” IEDM Technical Digest, p. 833 (1989)Google Scholar
  40. 21.40.
    D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T.-J. King, J. Bokor and C. Hu, “A Folded-Channel MOSFET for Deep-Sub-Tenth Micron Era,” IEDM Technical Digest, p. 1032 (1998)Google Scholar
  41. 21.41.
    X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor and C. Hu, “Sub 50-nm FinFET: PMOS,” IEDM Technical Digest, p. 67 (1999)Google Scholar
  42. 21.42.
    N. Lindert, Y.-K. Choi, L. Chang, E. Anderson, W. Lee, T.-J. King, J. Bokor and C. Hu, “Quasi-planar NMOS FinFETs with sub-100nm gate lengths,” 59th Device Research Conference, p. 26 (2001)Google Scholar
  43. 21.43.
    Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor and C. Hu, “Sub-20nm CMOS FinFET Technologies,” IEDM Technical Digest, p. 421 (2001)Google Scholar
  44. 21.44.
    L. Chang, K. J. Yang, Y.-C. Yeo, Y.-K. Choi, T.-J. King and C. Hu, “Reduction of direct-tunneling gate leakage current in double-gate and ultra-thin body MOSFETs,” IEDM Technical Digest, pp. 99–102 (2001)Google Scholar
  45. 21.45.
    N. Lindert, Y.-K. Choi, L. Chang, E. Anderson, W.-C. Lee, T.-J. King, J. Bokor and C. Hu, “Quasi-planar FinFETs with selectively grown germanium raised source/drain,” 2001 IEEE International SOI Conference Proceedings, p. 111 (2001)Google Scholar
  46. 21.46.
    J. Kedzierski, P. Xuan, E.H. Anderson, J. Bokor, T.-J. King and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” IEDM Technical Digest, p. 57 (2000)Google Scholar
  47. 21.47.
    P. Ranade, H. Takeuchi, T.-J. King and C. Hu, “Work function engineering of molybdenum gate electrodes by nitrogen implantation,” Electrochemical and Solid-State Letters 4, p. G85 (2001)CrossRefGoogle Scholar
  48. 21.48.
    J. Kedzierski, D.M. Fried, E.J. Nowak, T. Kanarsky, J.H. Rankin, H. Hanafi, W. Natzle, D. Boyd, Y. Zhang, R.A. Roy, J. Newbury, C. Yu, Q. Yang, P. Saunders, C.P. Willets, A. Johnson, S.P. Cole, H.E. Young, N. Carpenter, D. Rakowski, B.A. Rainey, P.E. Cottrell, M. Ieong and H.-S.P. Wong, “High-performance symmetric-gate and CMOS-compatible Vt asymmetricgate FinFET devices,” IEDM Technical Digest, pp. 437–440 (2001)Google Scholar
  49. 21.49.
    C. Figna, H. Iwai, T. Wada, T. Saito, E. Sangiorgi, B. Ricco, “A new scaling methodology for the 0.1-0025 μm MOSFET,” Symp. VLSI Techn. Dig., pp. 33–34 (1993)Google Scholar
  50. 21.50.
    M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J-L Regolini, C. Morin, A. Schiltz, J. Martins, R. Pantel, J. Galvier, “SON (Silicon On Nothing) — a new device architecture for the ULSI Era”, Symp. VLSI Techn. Dig., pp. 29–30 (1999)Google Scholar
  51. 21.51.
    M. Jurczak, T. Skotnicki, M. Paoli, B. Tormen, J. Martins, J-L. Regolini, D. Dutartre, P. Ribot, D. Lenoble, R. Pantel and S. Monfray. SON (Silicon On Nothing) — an Innovative Process for Advanced CMOS, IEEE Trans Electron Devices, pp. 2179–2187 (Nov. 2000)Google Scholar
  52. 21.52.
    C.H. Wann, K. Noda, T. Tanaka, M. Yoshida, C. Hu, “Comparative Study of Advanced MOSFET Concepts”, IEEE Trans Electron Devices 43, no. 10, pp. 1742–1753 (1996)CrossRefGoogle Scholar
  53. 21.53.
    R.H. Yan, A. Ourmazd, K.F. Lee, “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Trans Electron Devices 39, no.7, pp. 1704–1710 (1992)CrossRefGoogle Scholar
  54. 21.54.
    L.T. Su, J.B. Jacobs, J.E. Chung, D.A. Antoniadis, “Deep-Submicrometer Channel Design in Silicon-on-Insulator (SOI) MOSFET'S” IEEE Electron Dev Lett 15, no. 9, pp. 366–369 (1994)CrossRefGoogle Scholar
  55. 21.55.
    Y. Omura, S. Nakashima, K. Izumi, T. Ishii, “0.1 μ gate ultrathin film CMOS devices using SIMOX substrate with 80nm thick buried oxide layer”, IEDM Tech. Dig., pp. 675–678 (1991)Google Scholar
  56. 21.56.
    E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, H. Hiroshima, “Highly Suppressed Short-Channel Effects in Ultrathin SOI n-MOSFET's, IEEE Trans Electron Devices 47, no. 2, pp. 354–359 (2000)CrossRefGoogle Scholar
  57. 21.57.
    H.-O. Joachim, Y. Yamaguchi, T. Fujino, T. Kato, Y. Inoue, T. Hirao, “Comparison of Standard and Low-Dose SIMOX Substrates for 0.15 μm SOI MOSFET Applications”, SSDM, Osaka, pp. 854–856 (1995)Google Scholar
  58. 21.58.
    R. Koh, “Buried Layer Engineering to Reduce the Drain-Induced Barrier Lowering of Sub-0.05 μm SOI-MOSFET”, Jpn J Appl Phys 38, pp. 2294–2299 (1999)CrossRefGoogle Scholar
  59. 21.59.
    O. Faynot, B. Giffard, “High performance ultrathin SOI MOSFETs obtained by localized oxidation”, IEEE Electron Device Lett 15, p. 175 (1994)CrossRefGoogle Scholar
  60. 21.60.
    J.P. Colinge, “Subthreshold slope of thin-Film SOI MOSFETs,” IEEE Electron Device Lett EDL-7, no. 4, pp. 244–246 (1986)Google Scholar
  61. 21.61.
    C. Raynaud, O. Faynot, B. Giffard, J. Gautier and J-L. Pelloie, “High performance submicron SOI devices with silicon film thickness below 50 nm”, IEEE Int SOI Conference, pp. 55–56 (1994)Google Scholar
  62. 21.62.
    D.J. Godbey, J Electrochem Soc vol 139, pp. 2943–2947 (October 1992)Google Scholar
  63. 21.63.
    J.P. Colinge, M.H. Gao, A. Romano-Rodriguez, H. Maes, C. Claeys, “Silicon On Insulator Gate All Around Device”, IEDM Tech. Dig., pp. 595–598 (1990)Google Scholar
  64. 21.64.
    J-H. Lee, G. Taraschi, A. Wei, T.A. Langdo, E.A. Fitzgerald and D.A. Antoniadis, “Superself-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy”, IEDM Technical Digest, pp. 71–74 (1999)Google Scholar
  65. 21.65.
    S. Monfray, T. Skotnicki et al., “First 80nm SON (Silicon on Nothing) MOSFET with perfect morphology and high electrical performance,” IEDM Tech. Digest, pp. 645–648 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Bokor
  • T.-J. King
  • J. Hergenrother
  • J. Bude
  • D. Muller
  • T. Skotnicki
  • S. Monfray
  • G. Timp

There are no affiliations available

Personalised recommendations