Brief Notes on the History of Gate Dielectrics in MOS Devices

  • E. Kooi†
  • A. Schmitz
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Silicon Nitride Silicon Surface Oxide Thickness Gate Dielectric Bipolar Transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1.
    M.M. Atalla et al., “Fabrication of Semiconductor Devices having Stable Surface Characteristics,” US Patent 2,899,344. Filed April 30, 1958 granted Aug 11, 1959Google Scholar
  2. 2.2.
    C.J. Frosch and L. Derrick, Surface protection and selective masking during diffusion in silicon. J. Electrochem. Soc., Vol 104, No. 5, pp. 547–552, May 1957Google Scholar
  3. 2.3.
    J.A. Hoerni, ”Planar silicon transistors and diodes,” presented at the 1960 IRE International Electron Device Meeting Oct, 27–29 1960. Technical Article and Paper Series, No TP-14, 9 pp., 1961Google Scholar
  4. 2.4.
    R.N. Noyce, “Semiconductor device-and-lead structure,” U.S. Patent 2,981,877. Application filed July 30, 1959 granted April 25, 1961Google Scholar
  5. 2.5.
    D. Kahng “Electric field controlled semiconductor device,” U.S. Patent 3,102,230. Application filed May 31, 1960, granted Aug. 27, 1963Google Scholar
  6. 2.6.
    C.T. Sah, Evolution of the MOS transistor — From conception to VLSI. Proc. IEEE 76, 1280–1320 (1988)CrossRefGoogle Scholar
  7. 2.7.
    P. Balk, “Effects of hydrogen annealing on silicon surfaces,” presented at the Electrochemical Society Meeting San Fransisco, CA May 9–13, 1965, Extended Abstracts of Electronics Division, Vol. 14, No. 1, abstract No. 109, pp. 237–240, May 1965Google Scholar
  8. 2.8.
    E. Kooi, “Effects of low temperature heat treatments on the surface properties of oxidized silicon,” Philips Research Reports 20, pp. 578–594, Oct. 1965Google Scholar
  9. 2.9.
    E.H. Snow, A.S. Grove, B.E. Deal, and C.T. Sah, “Ion Transport Phenomena in Insulating Films,” J. Appl. Phys. 36, 1664 (1965)CrossRefGoogle Scholar
  10. 2.10.
    D.R. Kerr and D.R. Young, “Method of improving electrical characteristics of semiconductor devices and products so produced,” U.S.Patent 3,303,059. Filed June 29, 1964 issued Feb. 7, 1967Google Scholar
  11. 2.11.
    E.H. Snow and B.E. Deal “Polarization phenomena and other properties of phosphosilicate glass films on silicon,” J. Electrochem. Soc. 113(3), 263–9 (1966)Google Scholar
  12. 2.12.
    F.A. Sewell Jr., N.C. Tombs, Semiconductor devices employing silicon nitride as the diffusion masking and junction passivating material, US Patent 19,670,519Google Scholar
  13. 2.13.
    J.C. Sarace, R.E. Kerwin, D.L. Klein, R. Edwards, Metal-nitride-oxidesilicon field-effect transistors, with self-aligned gates. Bell Teleph. Lab., Inc., Murray Hill, NJ, USA. Solid-State Electronics 11(7), 653–60 (1968)Google Scholar
  14. 2.14.
    N.C. Tombs, Deposition of silicon nitride layers on semiconductor substrates. U.S. Patents 19,650,623 and 19,651,027 (1971)Google Scholar
  15. 2.15.
    J.A. Appels, E. Kooi, M.M. Pfaffen and W. Verkuylen, Local Oxidation of Silicon, Philips Research Reports 25, 117 (1970)Google Scholar
  16. 2.16.
    B.E. Deal and A.S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys. 36, 3770 (1965)CrossRefGoogle Scholar
  17. 2.17.
    C.R. Helms, B.E. Deal (eds.), Silicon Oxidation Models Based on Parallel Mechanisms, Phys Chem SiO2—Si Interface [Proc. Symp.], Plenum, New York, N.Y.Google Scholar
  18. 2.18.
    J.R. Ligenza, Oxidation of Silicon at 300°C. J. Appl. Phys. 36, 2703 (1965)CrossRefGoogle Scholar
  19. 2.19.
    J.R. Ligenza, Effect of Crystal Orientation on Oxidation Rates in High Pressure Steam. J. Phys. Chem. 65, 2011 (1961)Google Scholar
  20. 2.20.
    D.A. Kallender, S.S. Flaschen, R.J. Gnaedinger and C.M Lufty, Conference of the Electrochemical Society, Indianapolis, 1961; Electronics Division, abstract 67Google Scholar
  21. 2.21.
    E. Kooi and M.M.J. Schuurmans, Temperature gradient effects during heat treatments of oxidized silicon. Philips Research Reports 20, 315–19 (1965)Google Scholar
  22. 2.22.
    K.H. Maxwell, L.H. Rabouin, Chemical vapor deposition of oxide films from volatile chlorides. I. Silicon dioxide. Philco Corp., Blue Bell, PA, Electrochem Technol 3(1–2), 37–40 (1965)Google Scholar
  23. 2.23.
    G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, No. 8, April 19, 1965Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • E. Kooi†
  • A. Schmitz

There are no affiliations available

Personalised recommendations