High-k Crystalline Gate Dielectrics: A Research Perspective

  • F.J. Walker
  • R.A. McKee
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Alkaline Earth Research Perspective Alkali Halide Crystalline Oxide Charge Neutrality Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 19.1.
    (2001) International Technology Roadmap for Semiconductors, 2001 Edition, International Technology Roadmap for SemiconductorsGoogle Scholar
  2. 19.2.
    Nicollian EH, Brews JR (1982) MOS (Metal Oxide Semiconductor) Physics and Technology, J Wiley and Sons, New York:Chapter 2Google Scholar
  3. 19.3.
    Yang N, Henson WK, Hauser JR, Wortman JJ (1999) Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices, IEEE Trans. El. Dev. 46(7):1464Google Scholar
  4. 19.4.
    Stern F (1972) Self-consistent results for n-type Si inversion layers, Phys. Rev. B 5:4891CrossRefGoogle Scholar
  5. 19.5.
    Demkov A A, Liu R, Zhang, Xiaodong, Loechelt Heather (2000) Theoretical and experimental investigation of ultrathin oxynitrides and the role of nitrogen at the Si— SiO2 interface, J. Vac. Sci. Techno. B 18(5):2388CrossRefGoogle Scholar
  6. 19.6.
    Lo SH, Buchanan DA, Tau Y (1999) Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides, IBM J. Res. and Dev. 43(3):327Google Scholar
  7. 19.7.
    Tershoff J (1984) Phys. Rev. Lett. 52:465Google Scholar
  8. 19.8.
    Robertson J and Chen CW (1999) Appl. Phys. Lett. 74:1168 and Robertson J (2000) J. Vac. Sci. Technol. B 18:1785CrossRefGoogle Scholar
  9. 19.9.
    Tung RT (2000) Chemical bonding and Fermi level pinning at metalsemiconductor interfaces, Phys Rev Lett 84(26):6078 (2000) and Tung RT (2001) Formation of an electric dipole at metal-semiconductor interfaces, Phys. Rev. B 64 (20):205310CrossRefPubMedGoogle Scholar
  10. 19.10.
    McKee RA, Walker FJ, Chisholm MF (1998) Crystalline Oxides on Silicon: The First Five Monolayers, Phys. Rev. Lett. 81(14):3114CrossRefGoogle Scholar
  11. 19.11.
    McKee RA, Walker FJ, Chisholm MF (2001) Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide, Science 293:468CrossRefPubMedGoogle Scholar
  12. 19.12.
    Hubbard KJ, Schlom DG (1996) J. Mater. Res. 11:2757Google Scholar
  13. 19.13.
    Tsao Jeffry Y (1993) Materials Fundamentals of Molecular Beam Epitaxy, Academic Press, BostonGoogle Scholar
  14. 19.14.
    Eckstein JN, Bozovic I, Schlom DG, Harris JS (1991) Growth of superconducting Bi2Sr2Can−1CunOx, J. Cryst. Growth 111:973CrossRefGoogle Scholar
  15. 19.15.
    Locquet JP, Machler E (1992) Characterization of radio-frequency plasma source for molecular-beam epitaxial-growth of high-Tc superconductor films, J. Vac. Sci. and Tech. A 10(5):3100CrossRefGoogle Scholar
  16. 19.16.
    Boyce BA, Neave JH, Dobson PJ, Larsen PK (1984) Analysis of reflection high energy electron diffraction data from reconstructed semiconductor Surfaces, Phys. Rev. B 29:814CrossRefGoogle Scholar
  17. 19.17.
    Flynn CP (1988) Constraints on the growth of metallic superlattices, J. Phys. F 18(9):L195CrossRefGoogle Scholar
  18. 19.18.
    Gilmer GH and Grabow MH (1987) Models of Thin Film Growth, Journal of Metals 39(6):19Google Scholar
  19. 19.19.
    Bruinsma R, Zangwill A (1987) Morphological Transitions in Solid Eptiaxial Overlayers, Europhys. Lett. 4(6):729Google Scholar
  20. 19.20.
    Grabow MH, Gilmer GH (1988) Thin-film Growth modes, wetting and cluster nucleation, Surf. Sci. 194(3):333–346CrossRefGoogle Scholar
  21. 19.21.
    Yang MH, Flynn CP (1989) Growth of alkali halides from molecular beams: Global growth characteristics, Phys. Rev. Lett. 62(21):2476CrossRefPubMedGoogle Scholar
  22. 19.22.
    Flynn CP, Eades JA (2001) Structural variants in heteroepitaxial growth, Thin Solid Films 389:116CrossRefGoogle Scholar
  23. 19.23.
    Walker FJ, McKee RA (1992) High-temperature stability of molecular beam epitaxy-grown multi-layer ceramic composites: TiO/Ti2O3, J. of Cryst. Growth 116:235Google Scholar
  24. 19.24.
    Fang XM, McCann PJ, Liu WK (1996) Growth studies of CaF2 and BaF2/CaF2on (100) silicon using RHEED and SEM, Thin Solid Films 272:87CrossRefGoogle Scholar
  25. 19.25.
    Pfiefer L, Phillips JM, Smith TP, Augustyriak WM, West KW (1985) Use of a rapid anneal to improve CaF2:Si(100) epitaxy, Appl. Phys. Lett. 46 (10):948Google Scholar
  26. 19.26.
    McKee RA, Walker FJ, Conner JR, Raj R (1993) BaSi2 and thin film alkaline earth silicides on silicon, Appl. Phys. Lett. 63(20):2818CrossRefGoogle Scholar
  27. 19.27.
    Frantz JD, Mysen BO (1995) Raman spectra and structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 melts to 1600°C, Chemical Geology 121:155CrossRefGoogle Scholar
  28. 19.28.
    Krebs H, Walter PHL (1968) Fundamentals of Inorganic Crystal Chemistry, McGraw-Hill, London:Chapter 23Google Scholar
  29. 19.29.
    Lin A, Hong X, Wood V, Verevkin AA, Ahn CH, McKee RA, Walker FJ, Specht ED (2001) Epitaxial growth of Pb(Zr0.2Ti 0.8)O3 on Si and its nanoscale piezoelectric properties, Appl. Phys. Lett. 78(14):2034CrossRefGoogle Scholar
  30. 19.30.
    Stoneham AM and Dhote J (2002) A compilation of crystal data for halides and oxides, http://www.cmmp.ucl.ac.uk/~ahh/research/crystal/homepage.htm, University College London, London: and references contained thereinGoogle Scholar
  31. 19.31.
    Megaw HD (1946) Crystal tructure of double oxides of the perovskite type, Proc. Of the Phys. Soc. London 58:133CrossRefGoogle Scholar
  32. 19.32.
    Lide David R (1995) CRC Handbook of Chemistry and Physics, 75th edn, CRC PressGoogle Scholar
  33. 19.33.
    Jellison GE, Boatner LA, Lowndes DH, McKee RA, Godbole M (1994) Optical functions and transparent thin-films of SrTiO3, BaTiO3, and SiOx determined by spectroscopic ellipsometry, Appl. Optics 33(25):6053Google Scholar
  34. 19.34.
    Kwei GH, Lawson AC, Billinge SJL, Cheong S-W (1993) Structures of the ferroelectric phases of barium titanate, J. Phys Chem 97, 2368; and Harada J, Pedersen T, Barnea Z (1970) X-ray and Neutron Diffraction Study of Tetragonal Barium Titanate, Acta Crystallogr. 26:336CrossRefGoogle Scholar
  35. 19.35.
    Kennedy BJ, Howard CJ, Chakoumakos BC (1999) High-temperature phase transistions in SrZrO3, Phys. Rev. B 59(6):4023CrossRefGoogle Scholar
  36. 19.36.
    Hinatsu Y (1996) Electron paramagnetic resonance spectra of Pr4+in BaCeO3, BaArO3, BaSnO3 and their solid solutions, J. Solid State Chemistry 122:384CrossRefGoogle Scholar
  37. 19.37.
    McKee RA, Walker FJ, J. R. Conner JR, Specht ED, Zelmon DE (1991) Molecular-beam eptiaxy growth of epitaxial Barium silicide, Barium Oxide, and Barium-Titanate on silicon, Appl. Phys. Lett. 59(7):782CrossRefGoogle Scholar
  38. 19.38.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prarie, MNGoogle Scholar
  39. 19.39.
    Chambers SA, Liang Y, Yu Z, Droopad R, Ramdani J (2001) Band offset and structure of SrTiO3/Si(001) heterojunctions, J. Vac. Sci. A 19(3):934CrossRefGoogle Scholar
  40. 19.40.
    Lee GH, Shin BC, Kim IS (2001) Critical thickness of BaTiO3 film on SrTiO3 (001) evaluated by reflection high-energy electron diffraction, Materials Letters 50:134CrossRefGoogle Scholar
  41. 19.41.
    Tabata H, Tanaka H, Kawai T (1994) Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties, Appl. Phys. Lett. 65(15):1970CrossRefGoogle Scholar
  42. 19.42.
    Droopad R, Yu ZY, Ramdani J, Hilt L, Curless J, Overgaard C, Edwards JL, Finder J, Eisenbeiser K, Wang J, Kaushik V, Ngyuen BY, Ooms B (2001) Epitaxial oxides on silicon grown by molecular beam epitaxy, J. Cryst. Growth 227:936CrossRefGoogle Scholar
  43. 19.43.
    Mori H and Ishiwara H (1991) Jpn. J. Appl. Phys. 30:L1415CrossRefGoogle Scholar
  44. 19.44.
    Herrera-Gomez A, Aguirre-Tostado FS, Sun Y, Pianetta P, Yu Z, Marshall D, Droopad R, Spicer WE (2001) Photoemission from the Sr/Si(001) interface, J. Appl. Phys. 90(12):6070CrossRefGoogle Scholar
  45. 19.45.
    Hu X, Yao X, Peterson CA, Sarid D, Yu Z, Wang J, Marshall DS, Droopad R, Hallmark JA, Ooms WJ (2000) The (3×2) phase of Ba adsorption on Si(001)−2×1, Surf. Sci. 44:256CrossRefGoogle Scholar
  46. 19.46.
    Bakhtizin RZ, Kishimoto J, Hashizume T, Sakurai T (1996) STM study of Sr adsorption on Si(100) surface, Appl. Surf. Sci. 94/95:478CrossRefGoogle Scholar
  47. 19.47.
    Goodner DM, Marasco DL, Escuardo AA, Cao L, Tinkham BP, Bedzyk MJ (2003) X-ray standing wave study of the Sr/Si(001) 2×3 surface, Surface Science 547:19CrossRefGoogle Scholar
  48. 19.48.
    Stocks GM, Shelton WA, private communicationGoogle Scholar
  49. 19.49.
    Tasker PW, Colbourn EA, Mackrodt WC (1985) Segregation of isovalent impurity cations at the surfaces of MgO and CaO, J. Am. Ceram. Soc. 68 (2):74Google Scholar
  50. 19.50.
    Lettieri J, Haeni JH, Schlom DG (2002) Critical issues in the heteroepitaxial growth of alkaline-earth oxides on silicon, J. Vac. Sci. Technol. A 20(4):1332CrossRefGoogle Scholar
  51. 19.51.
    Lucovsky G, Phillips JC (2000) Limitations for aggressively scaled CMOS Si devices due to bond coordination constraints and reduced band offset energies at Si-high-k dielectric interfaces, Appl. Surf. Sci. 166:497CrossRefGoogle Scholar
  52. 19.52.
    An excellent treatment of MOS dielectric theory and field effect phenomena in such a device can be found in Nicollian and Brews (see pg. 332 for discussion of Dit and △C); Nicollian EH, Brews JR (1982) MOS(Metal Oxide Semiconductor) Physics and Technology, John Wiley & Sons, New York:332Google Scholar
  53. 19.53.
    Arora Narain (1993) MOSFET Models for VLSI Circuit Simulation, Springer Verlag, Wien, New York:Chapter 6Google Scholar
  54. 19.54.
    Brews JR (1975) Theory of carrier-density fluctuations in an IGFET near threshold, J Appl Phys 46:2181; and Brews JR (1975) Carrier-density fluctuations and IGFET mobility near threshold, J. Appl. Phys. 46:2193CrossRefGoogle Scholar
  55. 19.55.
    McKee RA, Walker FJ (1998) CaTiO3 interfacial template structure on semiconductor-based material and the growth of electro ceramic thin-films in the perovskite class, US Patent No. 5,830,270Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F.J. Walker
  • R.A. McKee

There are no affiliations available

Personalised recommendations