Advertisement

CMOS IC Fabrication Issues for High-k Gate Dielectric and Alternate Electrode Materials

  • L. Colombo
  • A.L.P. Rotondaro
  • M.R. Visokay
  • J.J. Chambers
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)

Keywords

Work Function Gate Dielectric Gate Length Gate Electrode Metal Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 15.1.
    Agnello PD (2002) “Process Requirements for Continuing Scaling of CMOS — The Need and Prospects for Atomic Level Manipulation.” IBM Journal of Research and Development 46,2/3: 317–338Google Scholar
  2. 15.2.
    Bagchi S, Grant JM, Chen J, Samavedam S, Huang F, Tobin P, Conner J, Prabhu L, and Tiner M, (2000) in Fully depleted SOI devices with TiN gate and elevated source-drain structures. Technical Digest of IEEE International Electron Device Meeting, pp. 56–57Google Scholar
  3. 15.3.
    Bao TI, Ko CC, Song JY, Li LP, Lu HH, Lu YC, Chen YH, Jang SM, and Liang MS, (2002) in 90nm Generation Cu/CVD Low-k (k < 2.5) Interconnect Technology. Technical Digest of IEEE International Electron Device Meeting, pp. 583–586Google Scholar
  4. 15.4.
    Buchanan DA, Gusev EP, Cartier E, Okorn-Schmidt H, Rim K, Gribelyuk MA, Mocuta A, Ajmera A, Copel M, Guha S, Bojarczuk N, Callegari A, D'Emic C, Kozlowski P, Chan K, Fleming RJ, Jamison PC, Brown J, and Arndt R, (2000) in 80nm poly-silicon gated n-FETs with ultrathin Al2O3 gate dielectric for ULSI applications. Technical Digest of IEEE International Electron Device Meeting, pp. 223–226Google Scholar
  5. 15.5.
    Callegari A, Gousev E, Zabel T, Lacey D, Gribelyuk M, and Jamison P (2002) “Thermal stability of polycrystalline silicon/metal oxide interfaces.” Applied Physics Letters 81,22: 4157–4158CrossRefGoogle Scholar
  6. 15.6.
    Chambers JJ, Rotondaro ALP, Bevan MJ, Visokay MR, and Colombo L (2002) “Effect of Composition and Post-deposition Annealing on the Etch Rate of Hafnium and Zirconium Silicates in Dilute HF.” Proceedings of the Electrochemical Society, Cleaning Technology in Semiconductor Device Technology VII, Fall 2001 PV-26, 359–363Google Scholar
  7. 15.7.
    Chang L, Tang S, King T-J, Bokor J, and Hu C, (2000) in Gate length scaling and threshold voltage control of double-gate MOSFETs. Technical Digest of IEEE International Electron Device Meeting, pp. 719–722Google Scholar
  8. 15.8.
    Chang S, Lee J, and Shin H (2002) “Gate Induced Drain Leakage Currents in Metal Oxide Semiconductor Field Effect Transistors with High-k Dielectric.” Japanese Journal of Applied Physics 41,7A: 4432–4435CrossRefGoogle Scholar
  9. 15.9.
    Chatterjee A, Chapman RA, Dixit G, Kuehne J, Hattangady S, Yang H, Brown GA, R. Aggarwal, Erdogan U, He Q, Hanratty M, Rogers D, Murtaza S, Fang SJ, Kraft R, Rotondaro ALP, Hu JC, Terry M, W. Lee, Fernando C, Konecni A, Wells G, Frystak D, Bowen C, Rodder M, and Chen I-C, (1997) in Sub-100nm Gate Length Metal Gate NMOS Transistors Fabricated by a Replacement Gate Process. Technical Digest of IEEE International Electron Device Meeting, pp. 821–824Google Scholar
  10. 15.10.
    Chatterjee A, Chapman RA, Joyner K, Otobe M, Hattangady S, Bevan M, Brown GA, H. Yang, He Q, Rogers D, Fang SJ, Kraft R, Rotondaro ALP, Terry M, Brennan K, Aur S-W, Hu JC, Tsai H-L, Jones P, Wil G, Aoki M, Rodder M, and Chen I-C, (1998) in CMOS Metal Replacement Gate Transistors using Tantalum Pentoxide Gate Insulator. Technical Digest of IEEE International Electron Device Meeting, pp. 777–780Google Scholar
  11. 15.11.
    Chau R, Kavalieros J, Doyle B, Murthy A, Paulsen N, Lionberger D, Barlage D, Arghavani R, Roberds B, and Doczy M, (2001) in A 50nm depleted-substrate CMOS transistor (DST). Technical Digest of IEEE International Electron Device Meeting, pp. 231–234Google Scholar
  12. 15.12.
    Chau R, Doyle B, Kavalieros J, Barlage D, Murthy A, Doczy M, Rios R, Linton T, Arghavani R, Jin B, Datta S, and Hareland S, (2002) in Advanced Depleted-Substrate Transistors: Single-Gate, Double-Gate and Tri-Gate. International Conference on Solid State Devices and Materials, pp. 68–69Google Scholar
  13. 15.13.
    Chen J, Maiti B, Connelly D, M. Mendocino, Huang F, Adetutu O, Yu Y, Weddington D, Wu W, Candelaria J, Dow D, Tobin P, and Mogab J, (1999) in 0.18 µm Metal Gate Fully-Depleted SOI MOSFETs for Advanced CMOS Applications. Symposium on VLSI Technology Digest of Technical Papers pp. 25–26Google Scholar
  14. 15.14.
    Cheng B, Cao M, Rao R, Inani A, Vande Voorde P, Greene WM, Stork JMC, Yu Z, Zeitzoff PM, and Woo JCS (1999) “The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs.” IEEE Transactions on Electron Devices 46,7: 1537–1544CrossRefGoogle Scholar
  15. 15.15.
    Cheng B, Maiti B, Samavedam S, Grant J, Taylor B, Tobin P, and Mogab J (2001) in Metal Gates for Advanced Sub-80nm SOI CMOS Technology, 2001 IEEE International Conference, pp. 91–92Google Scholar
  16. 15.16.
    Choi C-H, Chidambaram PR, Khamankar R, Machala CF, Yu Z, and Dutton RW (2002) “Dopant Profile and Gate Geometric Effects on Polysilicon Gate Depletion in Scaled MOS.” IEEE Electron Device Letters 49,7: 1227–1231Google Scholar
  17. 15.17.
    Choi C-H, Chidambaram PR, Khamankar R, Machala CF, Yu Z, and Dutton RW (2002) “Gate Length Dependent Polysilicon Depletion Effects.” IEEE Electron Device Letters 23,4: 224–226CrossRefGoogle Scholar
  18. 15.18.
    Choi Y-K, Chang L, Ranade P, Lee J-S, Ha D, Balasubramanian S, Agarwal A, Ameen M, King T-J, and Bokor J, (2002) in FinFET process refinements for improved mobility and gate work function engineering. Technical Digest of IEEE International Electron Device Meeting, pp. 259–262Google Scholar
  19. 15.19.
    Choi Y-K, King T-J, and Hu C (2002) “Nanoscale CMOS spacer FinFET for the terabit era.” IEEE Electron Device Letters 23,1: 25–27CrossRefGoogle Scholar
  20. 15.20.
    Colinge JP, Park JT, and Colinge CA (2002) “SOI devices for sub-0.1 µm gate lengths.” Microelectronics 1, 109–113Google Scholar
  21. 15.21.
    Copel M, Gribelyuk M, and Gusev E (2000) “Structure and stability of ultrathin zirconium oxide layers on Si (001).” Applied Physics Letters 76,4: 436–438CrossRefGoogle Scholar
  22. 15.22.
    Doris B, Ieong M, Zhu H, Zhang Y, Steen M, Natzle W, Callegari S, Narayanan V, Cai J, Ku SH, Jamison P, Li Y, Ren Z, Ku V, Boyd D, Kanarsky T, D'Emic C, Newport M, Dobuzinsky D, Deshpande S, Petrus J, Jammy R, and Haensch W, (2003) in Device Design Considerations for Ultra-Thin SOI MOSFETS. Technical Digest of IEEE International Electron Device Meeting, pp. 631–635Google Scholar
  23. 15.23.
    Ducroquet F, Achard H, Coudert F, Prévitali B, Lugand J-F, Ulmer L, Farjot T, Gobil Y, Heitzmann M, Tedesco S, Nier M-E, and Deleonibus S (2001) “Full CMP Integration of CVD TiN Damascene Sub-0.1-µm Metal Gate Devices For ULSI Applications.” IEEE Transactions on Electron Devices 48,8: 1816–1821CrossRefGoogle Scholar
  24. 15.24.
    Fung SKH, Zamdmer N, Oldiges PJ, Sleight J, Mocuta A, Sherony M, Lo S-H, Joshi R, Chuang CT, Yang I, Crowder S, Chen TC, Assaderaghi F, and Shahidi G, (2000) in Controlling floating-body effects for 0.13 µm and 0.10 µm SOI CMOS. Technical Digest of IEEE International Electron Device Meeting, pp. 231–234Google Scholar
  25. 15.25.
    Goodwin CA and Brossman JW (1982) “MOS Gate Oxide Defects Related to Treatment of Silicon Nitride Coated Wafers Prior to Local Oxidation.” Journal of the Electrochemical Society 129,5: 1066–1070Google Scholar
  26. 15.26.
    Graff K, (1995) Metal Impurities in Silicon-Device Fabrication (Springer-Verlag, Heidelberg, Germany, 1995)Google Scholar
  27. 15.27.
    Gusev E, Buchanan DA, Cartier E, Kummar A, DiMaria D, Guha S, Callegari A, Zafar S, Jamison PC, Neumayer DA, Copel M, Gribelyuk M, Okorn-Schmidt H, D'Emic C, Kozlowski P, Chan K, Bojarczuk N, Ragnarson L-Å, Ronsheim P, Rim K, Fleming RJ, Mocuta A, and Ajmera A, (2001) in Ultrathin High-k Gate Stacks for Advanced CMOS Devices. Technical Digest of IEEE International Electron Device Meeting, pp. 451–454Google Scholar
  28. 15.28.
    Hendrix BC, Borovik AS, Xu C, Roeder JF, Baum TH, Bevan MJ, Visokay MR, Chambers JJ, Rotondaro ALP, Bu H, and Colombo L (2002) “Composition control of Hf1−x Six O2 films deposited on Si by chemicalvapor deposition using amide precursors.” Applied Physics Letters 80,13: 2362–2364CrossRefGoogle Scholar
  29. 15.29.
    Hergenrother JM, Monroe D, Klemens FP, Komblit A, Weber GR, Mansfield WM, Baker MR, Baumann FH, Bolan KJ, Bower JE, Ciampa NA, Cirelli RA, Colonell JI, Eaglesham, Frackoviak DJ, Gossmann J, Green HJ, and Hill ML, (1999) in The Vertical Replacement-Gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length. Technical Digest of IEEE International Electron Device Meeting, pp. 75–78Google Scholar
  30. 15.30.
    Hergenrother JM, Wilk GD, Nigam T, Klemens FP, Monroe D, Silverman PJ, Sorsch TW, Busch B, Green ML, Baker MR, Boone T, Bude MK, Ciampa NA, Ferry EJ, Fiory AT, Hillenius SJ, Jacobson DC, Johnson RW, and Kalava, (2001) in 50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics. Technical Digest of IEEE International Electron Device Meeting, pp. 3.1.1–3.1.4Google Scholar
  31. 15.31.
    Hobbs C, Tseng H, Reid K, Taylor B, Dip L, L. Hebert, Garcia R, Hegde R, Grant J, Gilmer D, Franke A, Dhandapani V, Azrak M, Prabhu L, Rai R, Bagchi S, Conner J, Backer S, Dumbuya F, Nguyen B, and Tobin P, (2001) in 80nm Poly-Si Gate CMOS with HfO2 Gate Dielectric. Technical Digest of IEEE International Electron Device Meeting, pp. 651–654Google Scholar
  32. 15.32.
    Hornung B, Khamankar R, Niimi H, Goodwin M, Robertson L, Miles D, Kirkpatrick B, AlShareef H, Varghese A, Bevan MJ, Nicollian P, Chidambaram PR, Chakravarthi S, Gurba A, Zhang X, Blatchford J, Smith B, Lu JP, Deloach J, Rathsack B, Bowen C, Thakar G, Machala C, and Grider T, (2003) in A High-Performance 90nm Logic Technology with a 37nm Gate Length, Dual Plasma Nitrided Gate Dielectric and Differential Offset Spacer. Symposium on VLSI Technology Digest of Technical Papers, pp. 85–86Google Scholar
  33. 15.33.
    Hu JC, Yang H, Kraft R, Rotondaro ALP, Hattangady S, Lee WW, Chapman RA, Chao C-P, Chatterjee A, Hanratty M, Rodder M, and Chen I-C, (1997) in Feasability of Using W/TiN as Metal Gate for Conventional 0.13 µm CMOS Technology and Beyond. Technical Digest of IEEE International Electron Device Meeting, pp. 825–828Google Scholar
  34. 15.34.
    Istratov AA, Hieslmair H, and Weber ER (2000) “Iron Contamination in Silicon Technology.” Applied Physics A 70, 489–534CrossRefGoogle Scholar
  35. 15.35.
    Istratov AA and Weber ER (2002) “Physics of Copper in Silicon.” Journal of the Electrochemical Society 149,1: G21–G30CrossRefGoogle Scholar
  36. 15.36.
    ITRS, (2003) in International Technology Roadmap for Semiconductors. Semiconductor Industry Association, http://public.itrs.net, 2003 updated edition, (181 Metro Drive, Suite 450, San Jose, CA, 95510)Google Scholar
  37. 15.37.
    Jeon TS, White JM, and Kwong DL (2001) “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100).” Applied Physics Letters 78,3: 368–370CrossRefGoogle Scholar
  38. 15.38.
    Kakumu M and Hashimoto K, (1984) in Work Function Controlled Silicide Technology. Symposium on VLSI Technology Digest of Technical Papers, pp. 30–31Google Scholar
  39. 15.39.
    Kakumu M and Matsunaga Ji, (1985) in Lightly Impurity Doped (LD) Mo Silicide Gate Technology. Technical Digest of IEEE International Electron Device Meeting, pp. 415–418Google Scholar
  40. 15.40.
    Kedzierski J, Nowak E, Kanarsky T, Zhang Y, Boyd D, Carruthers R, Cabral C, Amos R, Lavoie C, Roy R, Newbury J, Sullivan E, Benedict J, Saunders P, Wong K, Canaperi D, Krishnan M, Lee K-L, Rainey BA, Fried D, Cottrell P, Wong H-SP, Ieong M, and Haensch W, (2002) in Metalgate FinFET and fully-depleted SOI devices using total gate silicidation. Technical Digest of IEEE International Electron Device Meeting, pp. 247–250Google Scholar
  41. 15.41.
    Kedzierski J, Boyd D, Ronsheim P, Zafar S, Newbury J, Ott J, Jr. CC, Ieong M, and Haensch W, (2003) in Threshold voltage control in NiSigated MOSFETs through silicidation induced impurity segregation (SIIS). Technical Digest of IEEE International Electron Device Meeting, pp. 315–318Google Scholar
  42. 15.42.
    Kedzierski J, Boyd D, Zhang Y, Steen M, Jamin FF, Benedict J, Ieong M, and Haensch W (2003) “Issues in NiSi-gated FDSOI device integration.” Technical Digest of IEEE International Electron Device Meeting, pp. 441–444Google Scholar
  43. 15.43.
    Kim Y, Gebara G, Freiler M, Barnett J, Riley D, Chen J, Torres K, Lim J, Foran B, Shaapur F, Agarwal A, Lysaght P, Brown GA, C. Y, Borthakur S, Li H-J, Nguyen B, Zeitzoff P, Bersuker G, Derro D, Bergmann R, Murto RW, Hou A, Huff HR, Shero E, Pomarede C, Givens M, Mazanec M, and Werkhoven C, (2001) in Conventional n-Channel MOSFET Devices Using Single Layer HfO2 and ZrO2 as High-k Gate Dielectrics with Polysilicon Gate Electrode. Technical Digest of IEEE International Electron Device Meeting, pp. 455–458Google Scholar
  44. 15.44.
    Kittl JA, Lauwers A, Chamirian O, Van Dal M, Akheyar A, Richard O, Lisoni JG, De Potter M, Lindsay R, and Maex K (2003) in Silicides for 65nm CMOS and Beyond, CMOS Front-End Materials and Process Technology (to be published)Google Scholar
  45. 15.45.
    Kooi E, Van Lierop JG, and Appels JA (1976) “Formation of Silicon Nitride at a Si-SiO2 Interface During Local Oxidation of Silicon and During Heat-Treatment of Oxidized Silicon in NH3 Gas.” Journal of the Electrochemical Society 123,7: 1117–1120Google Scholar
  46. 15.46.
    Koyama M, Suguro K, Yoshiki M, Kamimuta Y, Koike M, Ohse M, Hongo C, and Nishiyama A (2001) in Thermally Stable Ultra-Thin Nitrogen Incorporated ZrO2 Gate Dielectric Prepared by Low Temperature Oxidation of ZrN. Technical Digest of IEEE International Electron Device Meeting, pp. 459–462Google Scholar
  47. 15.47.
    Koyama M, Kaneko A, Ino T, Koike M, Kamata Y, Iijima R, Kamimuta Y, Takashima A, Suzuki M, Hongo C, Inumiya S, Takayanagi M, and Nishiyama A, (2002) in Effects of Nitrogen in HfSiON Gate Dielectric on the Electrical and Thermal Characteristics. Technical Digest of IEEE International Electron Device Meeting, pp. 849–852Google Scholar
  48. 15.48.
    Krivokapic Z, Maszara W, Achutan K, King P, Gray J, Sidorow M, Zhao E, Zhang J, Chan J, Marathe A, and Lin M-R, (2002) in Nickel silicide metal gate FDSOI devices with improved gate oxide leakage. Technical Digest of IEEE International Electron Device Meeting, pp. 271–274Google Scholar
  49. 15.49.
    Krivokapic Z, Moroz V, Maszara W, and M.-R. Lin, (2003) in Locally Strained Ultra-Thin Channel 25nm Narrow FDSOI Devices with Metal Gate and Mesa Isolation. Technical Digest of IEEE International Electron Device Meeting, pp. 445–448Google Scholar
  50. 15.50.
    Krug C, Da Rosa EBO, De Almeida RMC, Morais J, Baumvol IJR, Salgado TDM, and Stedile FC (2000) “Atomic Transport and Chemical Stability During Annealing of Ultrathin Al2O3 Films on Si.” Physics Review Letters 85,19: 4120–4123CrossRefGoogle Scholar
  51. 15.51.
    Lin R, Lu Q, Ranade P, King T-J, and Hu C (2002) “An Adjustable Work Function Technology Using Mo Gate for CMOS Devices.” IEEE Electron Device Letters 23,1: 49–51CrossRefGoogle Scholar
  52. 15.52.
    Lindsay R, Pawlak B, Kittl JA, Henson K, Torregiani C, Giangrandi S, Surdeanu R, Vandervorst W, Mayur A, Ross J, McCoy SP, Gelpey J, Elliott K, Pages X, Satta A, Lauwers A, Stolk P, and Maex K (2003) in A Comparison of Spike, Flash, SPER and Laser Annealing for 45nm CMOS, CMOS Front-End Materials and Process Technology (to be published)Google Scholar
  53. 15.53.
    Lu JP, Miles D, Zhao J, Gurba A, Xu Y, Lin C, Hewson M, Ruan J, Tsung L, Kuan R, Grider T, Mercer D, and Montgomery C, (2002) in A Novel Nickel SALICIDE Process Technology for CMOS Devices with sub-40nm Physical Gate Length. Technical Digest of IEEE International Electron Device Meeting, pp. 371–374Google Scholar
  54. 15.54.
    Lu Q, Lin R, Ranade P, King T-J, and Hu C, (2001) in Metal Gate Work Function Adjustment for Future CMOS Technology. Symposium on VLSI Technology Digest of Technical Papers, pp. 45–46Google Scholar
  55. 15.55.
    Maiti B, Tobin PJ, Hobbs C, Hegde RI, Huang F, O'Meara DL, Jovanovic D, Mendicino M, Chen J, Connelly D, Adetutu O, Mogab J, Candelaria J, and La LB, (1998) in PVD TiN metal gate MOSFETs on bulk silicon and fully depleted silicon-on-insulator (FDSOI) substrates for deep subquarter micron CMOS technology. Technical Digest of IEEE International Electron Device Meeting, pp. 781–784Google Scholar
  56. 15.56.
    Maitra K and Misra V (2003) “A Simulation Study to Evaluate the Feasibility of Midgap Workfunction Metal Gates in 25 nm Bulk CMOS.” IEEE Electron Device Letters 24,11: 707–709CrossRefGoogle Scholar
  57. 15.57.
    Maszara WP, Krivokapic Z, King P, Goo J-S, and Lin M-R, (2002) in Transistors with Dual Work Function Metal Gates by Single Full Silicidation (FUSI) of Polysilicon. Technical Digest of IEEE International Electron Device Meeting po. 367–370Google Scholar
  58. 15.58.
    McCoy SP, Gelpey J, Elliott K, and Gable KA (2003) in Flash-Assist RTP USJ Source Drain Extension Junction Formation and Characterization, Seventh International Workshop on: Fabrication, Characterization, and Modeling of Ultra-Shallow Doping Profiles in Semiconductors, pp. 104–110Google Scholar
  59. 15.59.
    Mertens PW, Meuris M, Schmidt HF, Verhaverbeke S, Heyns MM, Carr P, Graf D, Schnegg A, Kubota M, Dillenbeck K, and De Blanc R (1993) in Critical Aspects of Wafer Cleaning and Gate Oxide Integrity, Proceedings of the Electrochemical Society, Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing, pp. 87–102Google Scholar
  60. 15.60.
    Misra V, Zhong H, and Lazar H (2002) “Electrical Properties of Ru-Based Alloy Gate Electrodes for Dual Metal Gate Si-CMOS.” IEEE Electron Device Letters 23,6: 354–356CrossRefGoogle Scholar
  61. 15.61.
    Mohammadi F and Saraswat KC (1981) “N-Channel MOSFETs with WSi2 Gate.” IEEE Electron Device Letters 2,2: 24–25Google Scholar
  62. 15.62.
    Mohapatra NR, Desai MP, Narendra SG, and Rao VR (2002) “The effect of high-K gate dielectrics on deep submicrometer CMOS device and circuit performance.” IEEE Transactions on Electron Devices 49,5: 826–831CrossRefGoogle Scholar
  63. 15.63.
    Mohapatra NR, Desai MP, and Rao VR, (2003) in Detailed analysis of FIBL in MOS transistors with high-k gate dielectrics. International Conference on VLSI Design, pp. 99–104Google Scholar
  64. 15.64.
    Monfray S, Skotnicki T, Morand Y, Descombes S, Coronel P, Mazoyer P, Harrison S, Ribot P, Talbot A, Dutartre D, Haond M, Palla R, Le Friec Y, Leverd F, Nier ME, Vizioz C, and Louis D, (2002) in 50nm-gate all around (gaa)-silicon on nothing (son)-devices: a simple way to cointegration of gaa transistors within bulk mosfet process. Symposium on VLSI Technology Digest of Technical Papers, pp. 108–109Google Scholar
  65. 15.65.
    Monfray S, Skotnicki T, Tavel B, Morand Y, Descombes S, Talbot A, Dutartre D, Jenny C, Mazoyer P, Palla R, Leverd F, Le Friec Y, Pantel R, Haond M, Charbuillet C, Vizioz C, Louis D, and Buffet N, (2002) in SON (Silicon-On-Nothing) P-MOSFETs with totally silicided (CoSi/sub 2/) polysilicon on 5 nm-thick Si-films: the simplest way to integration of metal gates on thin FD channels. Technical Digest of IEEE International Electron Device Meeting, pp. 263–266Google Scholar
  66. 15.66.
    Morais J, Da Rosa EBO, Miotti L, Pezzi RP, Baumvol IJR, Rotondaro ALP, Bevan MJ, and Colombo L (2001) “Stability of Zirconium Silicate Films on Si Under Vacuum and O2 Annealing.” Applied Physics Letters 78,17: 2446–2448CrossRefGoogle Scholar
  67. 15.67.
    Nandakumar M, Chatterjee A, Sridhar S, Joyner K, Rodder M, and Chen I-C, (1998) in Shallow Trench Isolation for Advanced ULSI CMOS Technologies. Technical Digest of IEEE International Electron Device Meeting, pp. 133–136Google Scholar
  68. 15.68.
    Nishi Y and Doering R, (2000) Handbook of Semiconductor Manufacturing Technology (Marcel Dekker Inc, New York, NY, USA, 2000)Google Scholar
  69. 15.69.
    Nishinohara KT, Akasaka Y, Saito T, Yagishita A, Murakoshi A, Suguro K, and Arikado T (2001) “Surface Channel Metal Gate Complementary MOS with Light Counter Doping and Single Work Function Gate Electrode.” Japanese Journal of Applied Physics 40, 2603–2606CrossRefGoogle Scholar
  70. 15.70.
    Onishi K, Kang CS, Choi R, Cho H, Gopalan S, Nieh R, Krishnan S, and Lee JC, (2002) in Effects of High Temperature Forming Gas Anneal on HfO2 MOSFET Performance. Symposium on VLSI Technology Digest of Technical Papers, pp. 22–23Google Scholar
  71. 15.71.
    Park C, Kim S, Wang Y, Talwar S, and Woo JCS, (2001) in 50nm SOI CMOS Transistors with Ultra Shallow Junction Using Laser Annealing and Pre-amorphization Implantation. Symposium on VLSI Technology Digest of Technical Papers, pp. 69–70Google Scholar
  72. 15.72.
    Park JT, Colinge JP, and Diaz CH (2001) “Pi-gate SOI MOSFET.” IEEE Electron Device Letters 22,8: 405–406CrossRefGoogle Scholar
  73. 15.73.
    Perkins CM, Triplett BB, McIntyre PC, Saraswat KC, and Shero E (2002) “Thermal stability of polycrystalline silicon electrodes on ZrO2 gate dielectrics.” Applied Physics Letters 81,8: 1417–1419CrossRefGoogle Scholar
  74. 15.74.
    Pidin S, Morisaki Y, Sugita Y, Aoyama T, Irino K, Nakamura T, and Sugii T, (2002) in Low Standby Power CMOS with HfO2 Gate Oxide for 100-nm Generation. Symposium on VLSI Technology Digest of Technical Papers, pp. 28–29Google Scholar
  75. 15.75.
    Polishchuk I and Hu C, (2001) in Electron wavefunction penetration into gate dielectric and interface scattering — An alternative to surface scattering model. Symposium on VLSI Technology Digest of Technical Papers, pp. 51–52Google Scholar
  76. 15.76.
    Polishchuk I, Ranade P, King T-J, and Chenming Hu (2001) “Dual Work Function Metal Gate CMOS Transistors by Ni-Ti Interdiffusion.” IEEE Electron Device Letters 22,9: 444–446CrossRefGoogle Scholar
  77. 15.77.
    Qin M, Poon VMC, and Ho SCH (2001) “Investigation of Polycrystalline Nickel Silicide Films as a Gate Material.” Journal of the Electrochemical Society 148,5: G271–G274CrossRefGoogle Scholar
  78. 15.78.
    Quevedo-Lopez M, El-Bouanani M, Addepalli S, Duggan JL, Gnade BE, Wallace RM, Visokay MR, Douglas M, and Colombo L (2001) “Hafnium Interdiffusion Studies from Hafnium Silicate into Silicon.” Applied Physics Letters 79,25: 4192–4194CrossRefGoogle Scholar
  79. 15.79.
    Quevedo-Lopez MA, El-Bouanani M, Wallace RM, and Gnade BE (2002) “Wet chemical etching studies of Zr and Hf-silicate gate dielectrics.” Journal Vacuum Science and Technolology A 20,6: 1891–1897CrossRefGoogle Scholar
  80. 15.80.
    Quirk M and Serda J, (2001) Semiconductor Manufacturing Technology (Prentice-Hall Inc, Upper Saddle River, NJ, USA, 2001)Google Scholar
  81. 15.81.
    Ranade P, Takeuchi H, King T-J, and Hu C (2001) “Work Function Engineering of Molybdenum Gate Electrodes by Nitrogen Implantation.” Electrochemical and Solid State Letters 4,11: G85–G87CrossRefGoogle Scholar
  82. 15.82.
    Ranade P, Choi Y-K, Ha D, Agarwal A, Ameen M, and King T-J, (2002) in TunableWork Function Molybdenum Gate Technology for FDSOI-CMOS. Technical Digest of IEEE International Electron Device Meeting, pp. 363–366Google Scholar
  83. 15.83.
    Ranade P, Choi Y-K, Ha D, Takeuchi H, and King T-J, (2003) in Metal Gate Technology for Fully Depleted SOI CMOS. 2003 AVS 4th International Conference on Microelectronics and Interfaces, pp. 131–133Google Scholar
  84. 15.84.
    Ren Z, Solomon PM, Kanarsky T, Doris B, Dokumaci O, Oldiges P, Roy RA, Jones EC, Ieong M, Miller RJ, Haensch W, and Wong H-SP, (2002) in Examination of hole mobility in ultra-thin body SOI MOSFETs. Technical Digest of IEEE International Electron Device Meeting, pp. 51–54Google Scholar
  85. 15.85.
    Roh K, Youn S, Yang S, and Roh Y (2001) “Tungsten silicide for the alternate gate metal in metal-oxide-semiconductor devices.” Journal Vacuum Science and Technolology A 19,4: 1562–1565CrossRefGoogle Scholar
  86. 15.86.
    Rotondaro ALP, Vandamme E, Vanhellemont J, Simoen E, Heyns MM, and Claeys C (1995) “The Impact of Fe and Cu Contamination in the 1012 at/cm2 Range on the Performance of Junction Diodes.” Solid State Phenomena 47–48, 397–402Google Scholar
  87. 15.87.
    Rotondaro ALP, Hurd TQ, Kaniava A, Vanhellemont J, Simoen E, Heyns MM, Claeys C, and Brown GA (1996) “Impact of Fe and Cu Contamination on the Minority Carrier Lifetime of Silicon Substrates.” Journal of the Electrochemical Society 143,9: 3014–3019Google Scholar
  88. 15.88.
    Rotondaro ALP, Hames GA, and Yocum T (1999) in Use of H2SO4 for Etch Rate and Selectivity Control of Boiling H3PO4, Proceedings of the Electrochemical Society, Cleaning Technology in Semiconductor Device Technology VI, Fall 1999, pp. 385–390Google Scholar
  89. 15.89.
    Rotondaro ALP, Visokay MR, Chambers JJ, Shanware A, Khamankar R, Bu H, Laaksonen RT, Tsung L, Douglas M, Kuan R, Bevan MJ, Grider T, McPherson J, and Colombo L, (2002) in Advanced CMOS transistors with a novel HfSiON gate dielectric. Symposium on VLSI Technology Digest of Technical Papers (Honolulu, HI), pp. 148–149Google Scholar
  90. 15.90.
    Rotondaro ALP, Visokay MR, Shanware A, Chambers JJ, and Colombo L (2002) “Carrier Mobility in MOSFETs Fabricated with Hf-Si-O-N Gate Dielectric, Polysilicon Gate Electrode, and Self-Aligned Source and Drain.” IEEE Electron Device Letters 23,10: 603–605CrossRefGoogle Scholar
  91. 15.91.
    Runyan WR and Bean KE, (1990) Semiconductor Integrated Circuit Processing Technology (Addison-Wesley Publishing Company, Inc, New York, NY USA, 1990)Google Scholar
  92. 15.92.
    Samavedam SB, La LB, Smith J, Dakshina-Murthy S, Luckowski E, Schaeffer J, Zavala M, R. Martin, Dhandapani V, Triyoso D, Tseng HH, Tobin PJ, Gilmer DC, Hobbs C, Taylor WJ, Grant JM, Hegde RI, Mogab J, Thomas C, Abramowitz P, Moosa M, Conner J, Jiang J, Arunachalam M, Sadd M, Nguyen B-Y, and White B, (2002) in Dual-Metal Gate CMOS with HfO2 Gate Dielectric. Technical Digest of IEEE International Electron Device Meeting, pp. 433–436Google Scholar
  93. 15.93.
    Shankoff TA, Sheng TT, Haszko SE, Marcus RB, and Smith TE (1980) “Bird's Beak Configuration and Elimination of Gate Oxide Thinning Produced During Selective Oxidation.” Journal of the Electrochemical Society 127,1: 216–222Google Scholar
  94. 15.94.
    Sim JH, Wen HC, Lu JP, and Kwong DL (2003) “Dual Work Function Metal Gates Using Full Nickel Silicidation of Doped Poly-Si.” IEEE Electron Device Letters 24,10: 631–633CrossRefGoogle Scholar
  95. 15.95.
    Taur Y and Ning TH, (1998) Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, UK, 1998)Google Scholar
  96. 15.96.
    Tavel B, Skotnicki T, Pares G, Carrière N, Rivoire M, Leverd F, Julien C, Torres J, and R. Pantel, (2001) in Totally Silicided (CoSi2) Polysilicon: a novel approach to very low-resistive gate (∼2Ω/□) without metal CMP nor etching. Technical Digest of IEEE International Electron Device Meeting, pp. 37.5.1–37.5.4Google Scholar
  97. 15.97.
    Vandooren A, Egley S, Zavala M, Franke A, Barr A, White T, Samavedam S, Mathew L, Schaeffer J, Pham D, Conner J, Dakshina-Murthy S, Nguyen B-Y, White B, Orlowski M, and Mogab J, (2002) in Ultra-thin body fullydepleted SOI devices with metal gate (TaSiN) gate, high K (HfO/sub 2/) dielectric and elevated source/drain extensions. IEEE International SOI Conference, pp. 205–206Google Scholar
  98. 15.98.
    Vandooren A, Barr A, Mathew L, White TR, Egley S, Pham D, Zavala M, Samavedam S, Schaeffer J, Conner J, Nguyen B-Y, White BE, Jr., Orlowski MK, and Mogab J (2003) “Fully-depleted SOI devices with TaSiN gate, HfO/sub 2/ gate dielectric, and elevated source/drain extensions.” IEEE Electron Device Letters 24,5: 342–344CrossRefGoogle Scholar
  99. 15.99.
    Vandooren A, Thean AVY, Y. Du IT, Hughes J, Stephens T, Huang M, Egley S, Zavala M, Sphabmixay K, Barr A, White T, Samavedam S, Mathew L, Schaeffer J, Triyoso D, Rossow M, Roan D, Pham D, Rai R, Nguyen B-Y, White B, Orlowski M, Duvallet A, Dao T, and Mogab J, (2003) in Mixed-signal performance of Sub-100nm fully-depleted SOI devices with metal gate, high-k (HfO2) dielectric and elevated Source/Drain extensions. Technical Digest of IEEE International Electron Device Meeting, pp. 975–977Google Scholar
  100. 15.100.
    Visokay MR, Chambers JJ, Rotondaro ALP, and Colombo L (2002) “Application of HfSiON as a Gate Dielectric Material.” Applied Physics Letters 80,18: 3183–3185CrossRefGoogle Scholar
  101. 15.101.
    Visokay MR, Chambers JJ, Rotondaro ALP, Kuan R, Tsung L, Douglas M, Bevan MJ, Bu H, Shanware A, and Colombo L, (2002) in Properties of Hf-based oxide and oxynitride thin films. Proceedings of the AVS Third International Conference on Microelectronics and Interfaces (AVS, Santa Clara, CA, USA), pp. 127–129Google Scholar
  102. 15.102.
    Weast RC, (1978) CRC Handbook of Chemistry and Physics, 58th edn (CRC Press Inc., Cleveland, OH, USA, 1978)Google Scholar
  103. 15.103.
    Wilk GD, Wallace RM, and Anthony JM (2001) “High-k gate dielectrics: Current status and materials properties considerations.” Journal of Applied Physics 89,10: 5243–5275CrossRefGoogle Scholar
  104. 15.104.
    Wilk GD, Green ML, Ho M-Y, Busch BW, Sorsch TW, Klemens FP, Brijs B, Dover RBv, Kornblit A, Gustafsson T, Garfunkel E, Hillenius S, Monroe D, Kalavade P, and Hergenrother JM, (2002) in Improved Film Growth and Flatband Voltage Control of ALD HfO2 and Hf-Al-O with n+ poly-Si Gates using Chemical Oxides and Optimized Post-Annealing. Symposium on VLSI Technology Digest of Technical Papers, pp. 88–99Google Scholar
  105. 15.105.
    Wolf S, (1990) Silicon Processing for the VLSI Era-Process Integration, Vol. 2 (Lattice Press, Sunset Beach, CA, USA, 1990)Google Scholar
  106. 15.106.
    Wolf S, (1995) Silicon Processing for the VLSI Era-The Submicron MOSFET, Vol. 3 (Lattice Press, Sunset Beach, CA, USA, 1995)Google Scholar
  107. 15.107.
    Wong H-SP, Frank DJ, and Solomon PM (1998) in Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation, Electron Devices Meeting, pp. 407–410Google Scholar
  108. 15.108.
    Wong H-SP (2002) “Beyond the conventional transistor,” IBM Journal of Research and Development 46,2/3: 133–168Google Scholar
  109. 15.109.
    Xuan P and Bokor J (2003) “Investigation of NiSi and TiSi as CMOS Gate Materials.” IEEE Electron Device Letters 24,10: 634–636CrossRefGoogle Scholar
  110. 15.110.
    Yagishita A, Saito T, Nakajima K, Inumiya S, Akasaka Y, Ozawa Y, Hieda K, Tsunashima Y, Suguro K, Arikado T, and Okumura K (2000) “High Performance Damascene Metal Gate MOSFET's for 0.1 µm Regime.” IEEE Trancations on Electron Devices 47,5: 1028–1034CrossRefGoogle Scholar
  111. 15.111.
    Yagishita A, Saito T, Nakajima K, Inumiya S, Matsuo K, Takeshi Shibata, Tsunashima Y, Suguro K, and Arikado T (2001) “Improvement of Threshold Voltage Deviation in Damascene Metal Gate Transistors.” IEEE Transcations on Electron Devices 48,8: 1604–1611CrossRefGoogle Scholar
  112. 15.112.
    Yamaguchi T, Iijima R, Ino T, Nishiyama A, Satake H, and Fukushima N, (2002) in Additional Scattering Effects for Mobility Degradation in Hfsilicate Gate MISFETs. Technical Digest of IEEE International Electron Device Meeting, pp. 621–624Google Scholar
  113. 15.113.
    Yamaguchi T, Ino T, Satake H, and Fukushima N (2003) in Novel Dielectric Breakdown Model of Hf-Silicate with High Temperature Annealing, IEEE International Reliability Physics Symposium, pp. 34–40Google Scholar
  114. 15.114.
    Yang F-L, Chen H-Y, Chen F-C, Huang C-C, Chang C-Y, Chiu H-K, Lee C-C, Chen C-C, Huang H-T, Chen C-J, Tao H-J, Yeo Y-C, Liang M-S, and Hu C, (2002) in 25nm CMOS Omega FETs. Technical Digest of IEEE International Electron Device Meeting, pp. 255–258Google Scholar
  115. 15.115.
    Yang H, Brown GA, Hu JC, Lu JP, Kraft R, Rotondaro ALP, Hattangady SV, Chen I-C, Luttmer JD, Chapman RA, Tsai HL, Amirhekmat B, and Magel LK, (1997) in A Comparison of TiN Processes for CVD W/TiN Gate Electrode on 3nm Gate Oxide. Technical Digest of IEEE International Electron Device Meeting, pp. 459–462Google Scholar
  116. 15.116.
    Yang IY, Chen K, Smeys P, Sleight J, Lin L, Leong M, Nowak E, Fung S, Maciejewski E, Varekamp P, Chu W, Park H, Agnello P, Crowder S, Assaderaghi F, and Su L, (1999) in Sub-60nm physical gate length SOI CMOS. Technical Digest of IEEE International Electron Device Meeting, pp. 431–434Google Scholar
  117. 15.117.
    Yeap GC-F, Krishnan S, and Lin M-R (1998) “Fringing-induced barrier lowering (FIBL) in sub-100nm MOSFETs with high-K gate dielectrics.” Electronics Letters 34,11: 1150–1152CrossRefGoogle Scholar
  118. 15.118.
    Zhong H, Hong S-N, Suh Y-S, Lazar H, Heuss G, and Misra V, (2001) in Properties of Ru-Ta Alloys as Gate Electrodes For NMOS and PMOS Silicon Devices. Technical Digest of IEEE International Electron Device Meeting, pp. 467–470Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Colombo
  • A.L.P. Rotondaro
  • M.R. Visokay
  • J.J. Chambers

There are no affiliations available

Personalised recommendations