Issues in Metal Gate Electrode Selection for Bulk CMOS Devices

  • V. Misra
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)


Work Function Reaction Layer Gate Electrode Metal Gate Metal Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 14.1.
    International Technology Roadmap for Semi-conductors Home Page, http://public.itrs.netGoogle Scholar
  2. 14.2.
    C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White and P. Tobin. “Fermi Level Pinning at the PolySi/Metal Oxide Interface” IEEE Symp. on VLSI Technology Tech. Dig., 2–1, 2003Google Scholar
  3. 14.3.
    I. De, D. Johri, A. Srivastava, C.M. Osburn, “Impact of gate workfunction on device performance at the 50 nm technology node”, Solid-State-Electronics 44, no. 6, p. 1077–80, 2000CrossRefGoogle Scholar
  4. 14.4.
    J.R. Hauser and W.T. Lynch, “Critical front materials and processes for 50nm and beyond IC devices,” SRC working paper, 1997Google Scholar
  5. 14.5.
    V. Misra, G.P. Heuss, and H. Zhong, “Use of metal-oxide-semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Appl. Phys. Lett. 78, p. 4166, 2001CrossRefGoogle Scholar
  6. 14.6.
    S.P. Murarka, Metallization: Theory and Practice for VLSI and ULSI, Boston, Butterworth-Heinemann, 1993Google Scholar
  7. 14.7.
    S. Zafar, C. Cabral, R. Amos and A. Callegari, “A method for measuring barrier heights, metal work functions and fixed charge densities in metal/SiO2/Si capacitors”. Appl. Phys. Lett. 80(25), pp. 4858–60, 2002CrossRefGoogle Scholar
  8. 14.8.
    Y.-C. Yeo, P. Ranade, T.-J. King and C. Hu, “Effects of high-k gate dielectric materials on metal and silicon gate workfunctions,” IEEE Electron Device Letters 23, No. 6, pp. 342–344, 2002Google Scholar
  9. 14.9.
    W. Mönch, “Electronic properties of ideal and interface-modified metal semiconductor interfaces,” J. Vac. Sci. Technol. 14, pp. 2985–2993, Jul./Aug. 1996CrossRefGoogle Scholar
  10. 14.10.
    J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. 18, pp. 1785–1791, May/Jun. 2000CrossRefGoogle Scholar
  11. 14.11.
    W.A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Freeman, San Francisco, 1980Google Scholar
  12. 14.12.
    M.A. Nicolet, “Ternary amorphous metallic thin-films as diffusion-barriers for Cu metallization”, Appl. Surf. Sci. 91, p. 269, 1995CrossRefGoogle Scholar
  13. 14.13.
    Q. Lu, R. Lin, P. Ranade, T.-J. King, and C. Hu, “Metal gate work function adjustment for future CMOS technology,” IEEE Symp. on VLSI Technology Tech. Dig., p. 49, 2001Google Scholar
  14. 14.14.
    I. Polishchuk, P. Ranade, T.-J. King, and C. Hu, “Dual work function metal gate CMOS technology using metal interdiffusion,” IEEE Electron Device Lett. 22, p. 444, 2001CrossRefGoogle Scholar
  15. 14.15.
    J. Lee, H. Zhong, Y.-S. Suh, G. Heuss, J. Gurganus, B. Bei, V. Misra, “Tunable work function dual metal gate technology for bulk and non-bulk CMOS,” IEEE International Electron Devices Meeting Digest, p. 359, 2002Google Scholar
  16. 14.16.
    M. Takeyama, A. Noya, T. Sase, and A. Ohta, “Properties of TaNx films as diffusion barriers in the thermally stable Cu/Si contact systems,” Journal of Vacuum and Science Technology 14, pp. 674–678, 1996CrossRefGoogle Scholar
  17. 14.17.
    J.P. Chang, M.L. Steigerwald, R.M. Fleming, R.L. Opila, and G.B. Alers, “Thermal Stability of Ta2O5 in Metal-Oxide-Metal Capacitor Structures,” Appl. Phys. Lett. 74, pp. 3705–3707, 1999CrossRefGoogle Scholar
  18. 14.18.
    H. Wakabayashi, Y. Saito, K. Takeuchi, T. Mogami, and T. Kunio, “A Dual-Metal Gate CMOS Technology Using Nitrogen-Concentration-Controlled TiNx Film,” IEEE Transactions on Electron Devices 48, pp. 2363–2369, 2001CrossRefGoogle Scholar
  19. 14.19.
    M. Moriwaki, T. Yamada, Y. Harada, S. Fujii, M. Yamanaka, J. Shibata, and Y. Mori, “Improved Metal Gate Process by Simultaneous Gate-Oxide Nitridation during W/WNx Gate Formation,” Japanese Journal Of Applied Physics 39, pp. 2177–2180, 2000CrossRefGoogle Scholar
  20. 14.20.
    Y.S. Suh, G.P. Heuss, H. Zhong, and V. Misra, “Electrical Characteristics of TaSixNy Gate Electrodes for Dual Gate Si-CMOS Devices,” IEEE Symp. on VLSI Technology Tech. Dig., p. 47, 2001Google Scholar
  21. 14.21.
    Y-S. Suh, G.P. Heuss, V. Misra, D.G. Park and K.Y. Lim, “Thermal stability of TaSi/sub x/N/sub y / films deposited by reactive sputtering on SiO2.”, Journal-of-the-Electrochemical-Society 150(5), pp. 79–82, May 2003CrossRefGoogle Scholar
  22. 14.22.
    Y-S. Suh, G.P. Heuss, J.H. Lee and V. Misra, “Effect of the composition on the electrical properties of TaSixNy metal gate electrodes”, IEEE-Electron-Device-Letters 24(7), pp. 439–41, July 2003CrossRefGoogle Scholar
  23. 14.23.
    S.B. Samavedam et al., “Dual-metal gate CMOS with HfO2 gate dielectric”, IEEE Internation Electron Device Meeting Technical Digest, pp. 433–6, 2002Google Scholar
  24. 14.24.
    S.C. Fain, J.M. McDavid, “Work-function variation with alloy composition: Ag-Au”, Phys. Rev. B 9, p. 5099, 1974CrossRefGoogle Scholar
  25. 14.25.
    R. Ishii, K. Matsumura, A. Sakai, T. Sakata, “Work function of binary alloys”, Appl. Surf. Sci. 169–170, p. 658, 2001CrossRefGoogle Scholar
  26. 14.26.
    T. Sands, W.K. Chan, C.C. Chang, E.W. Chase, and V.K. Keramidas, “NiAl/n-GaAs Schottky diodes: barrier height enhancement by hightemperature annealing”, Appl. Phys. Lett. 52, p. 1388, 1988Google Scholar
  27. 14.27.
    B. Blanpain, G.D. Wilk, J.O. Olowolafe, and J.W. Mayer, “Thermal stability of coevaporated Al-Pt thin films on GaAs substratte,” Appl. Phys. Lett. 57, p. 392, 1990CrossRefGoogle Scholar
  28. 14.28.
    T.S. Huang, J.G. Peng, and C.C. Lin, “Thermal stability of Mo-Al Schottky metallization on n-GaAs,” J. Vac. Sci. Technol. B 11, p. 756, 1993CrossRefGoogle Scholar
  29. 14.29.
    C.D. Gelatt, and H. Ehrenreich, “Charge transfer in alloys: AgAu,” Phys. Rev. B 10, p. 398, 1974CrossRefGoogle Scholar
  30. 14.30.
    H. Zhong, S.N. Hong, Y.-S. Suh, H. Lazar, G. Heuss, and V. Misra, “Properties of Ru-Ta Alloys as Gate Electrodes For NMOS and PMOS Silicon Devices,” in IEEE Int. Electron Devices Meet. Tech. Dig., p. 467, 2001Google Scholar
  31. 14.31.
    V. Misra, H. Zhong and H. Lazar, “Electrical properties of Ru-based alloy gate electrodes for dual metal gate Si-CMOS,” IEEE Electron Device Letters 23(6), pp. 354–6, 2002CrossRefGoogle Scholar
  32. 14.32.
    R. Beyers, “Thermodynamic considerations in refractory metal-siliconoxygen systems,” Journal of Applied Physics 56, pp. 147–152, 1984CrossRefGoogle Scholar
  33. 14.33.
    H. Zhong, G.P. Heuss, Y-S. Suh, S.N. Hong and V. Misra, “Electrical properties of Ru and RuO2 gate electrodes for Si-PMOSFET with ZrO2 and Zr-silicate dielectrics,” Journal-of-Electronic-Materials 30(12), pp. 1493–8, 2001Google Scholar
  34. 14.34.
    H. Zhong, G.P. Heuss, V. Misra, L. Hongfa, H.L. Choong and D.L. Kwong, “Characterization of RuO2 electrodes on Zr silicate and ZrO2dielectrics”, Applied-Physics-Letters 78(8), pp. 1134–619, Feb. 2001CrossRefGoogle Scholar
  35. 14.35.
    J.E. Chung, P.K. Ko, and C. Hu, “A model for hot-electron-induced MOSFET linear current degradation based on mobility reduction due to interface-state generation,” IEEE Trans Electron Devices ED-38, pp. 1362–1370, 1991CrossRefGoogle Scholar
  36. 14.36.
    A. Vandooren, A. Barr, L. Mathew, T.R. White, S. Egley, D. Pham, M. Zavala, S. Samavedam, J. Schaeffer, J. Conner, B.Y. Nguyen, B.E. White Jr., M.K. Orlowski, and J. Mogab, “Fully-depleted SOI devices with TaSiN gate, HfO2 gate dielectric, and elevated source/drain extensions,” IEEE-Electron-Device-Letters 24(5), pp. 342–4, May 2003CrossRefGoogle Scholar
  37. 14.37.
    S.B. Samavedam et. al, “Fermi Level Pinning with Sub-monolayer MeOx and Metal Gates,” IEEE International Electron Device Meeting Technical Digest, pp. 307–310, 2003Google Scholar
  38. 14.38.
    H.Y. Yu, J.F. Kang, J.D. Chen, C. Ren, Y.T. Hou, S.J. Wang, M.F. Li, D.S.H. Chan, K.L. Bera, C.H. Tung, A. Du and D.L. Kwong, “Thermally Robust High Quality HfN/HfO2 Gate Stack for Advanced CMOS Devices,” IEEE International Electron Device Meeting Technical Digest, pp. 99–102, 2003Google Scholar
  39. 14.39.
    M. Akbar, S. Gopalan, H.-J. Cho, K. Onishi, R. Choi, R. Nieh, C. S. Kang, Y.H. Kim, J. Han, S. Krishnan, and J.C. Lee, “High-performance TaN/HfSiON/Si metal-oxide-semiconductor structures prepared by NH3 post-deposition anneal,” Applied Physics Letters 82, No. 11, 17, March 2003Google Scholar
  40. 14.40.
    J. Lee, Y.-S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin, V. Misra, “Compatibility of Dual Metal Gate Electrodes with High-K Dielectrics for CMOS”, IEEE International Electron Device Meeting Technical Digest, pp. 323–6, 2003Google Scholar
  41. 14.41.
    R. Jha, J. Gurganos, Y.H. Kim, R. Choi, J. Lee and V. Misra, “A Capacitance Based Methodology for Extracting Work Function of Metal Electrodes on High-K Dielectrics”, Submitted to IEEE Electron Device Letters, Jan 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • V. Misra

There are no affiliations available

Personalised recommendations