Advertisement

Designing Interface Composition and Structure in High Dielectric Constant Gate Stacks

  • G.N. Parsons
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 16)

Keywords

Atomic Layer Deposition Gate Dielectric Excess Oxygen Apply Physic Letter Gate Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1.
    I. Barin, Thermochemical Data of Pure Substances (VCH, New York, 1995)Google Scholar
  2. 10.2.
    K.J. Hubbard and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” Journal of Materials Research 11, 2757–2776 (1996)Google Scholar
  3. 10.3.
    M. Gutowski, J.E. Jaffe, C.L. Liu, M. Stoker, R.I. Hegde, R.S. Rai, and P.J. Tobin, “Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2,” Applied Physics Letters 80, 1897–1899 (2002)CrossRefGoogle Scholar
  4. 10.4.
    Y. Widjaja and C.B. Musgrave, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles,” Journal of Chemical Physics 117, 1931–1934 (2002)CrossRefGoogle Scholar
  5. 10.5.
    Y. Widjaja and C.B. Musgrave, “Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition,” Applied Physics Letters 81, 304–306 (2002)Google Scholar
  6. 10.6.
    G.D. Wilk and R.M. Wallace, “Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon,” Applied Physics Letters 74, 2854–2856 (1999)CrossRefGoogle Scholar
  7. 10.7.
    M. Copel, M. Gribelyuk, and E. Gusev, “Structure and stability of ultrathin zirconium oxide layers on Si(001),” Applied Physics Letters 76, 436–438 (2000)CrossRefGoogle Scholar
  8. 10.8.
    J.P. Maria, D. Wicaksana, A.I. Kingon, B. Busch, H. Schulte, E. Garfunkel, and T. Gustafsson, “High temperature stability in lanthanum and zirconiabased gate dielectrics,” Journal of Applied Physics 90, 3476–3482 (2001)CrossRefGoogle Scholar
  9. 10.9.
    T.S. Jeon, J.M. White, and D.L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Applied Physics Letters 78, 368–370 (2001)CrossRefGoogle Scholar
  10. 10.10.
    J. Morais, E.B.O. d. Rosa, L. Miotti, R.P. Pezzi, I.J.R. Baumvol, A.L.P. Rotondaro, M.J. Bevan, and L. Colombo, “Stability of zirconium silicate films on Si under vacuum and O2 annealing,” Applied Physics Letters 78, 2446–2448 (2001)CrossRefGoogle Scholar
  11. 10.11.
    R. Tromp, G.W. Rubloff, P. Balk, F.K. LeGoues, E.J. van Loenen “High-Temperature SiO2 Decomposition at the SiO2/Si Interface” Physical Review Letters 55, 2332–2335 (1985)CrossRefPubMedGoogle Scholar
  12. 10.12.
    M.A. Gribelyuk, A. Callegari, E.P. Gusev, M. Copel, and D.A. Buchanan, “Interface reactions in ZrO2 based gate dielectric stacks,” Journal of Applied Physics 92, 1232–1237 (2002)CrossRefGoogle Scholar
  13. 10.13.
    M.-H. Cho, Y.S. Roh, C.N. Whang, K. Jeong, S.W. Nahm D.-H. Ko, J.H. Lee, N.I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Applied Physics Letters 81, 472–474 (2002)CrossRefGoogle Scholar
  14. 10.14.
    Y.-S. Lin, R. Puthenkovilakam, and J.P. Chang, “Dielectric property and thermal stability of HfO2 on silicon,” Applied Physics Letters 81, 2041–2043 (2002)Google Scholar
  15. 10.15.
    M. Copel, E. Cartier, V. Narayanan, M.C. Reuter, S. Guha, and N. Bojarczuk, “Characterization of the silicate/Si(001) interface,” Applied Physics Letters 81, 4227–4229 (2002)CrossRefGoogle Scholar
  16. 10.16.
    B.H. Lee, L. Kang, R. Nieh, W.J. Qi, and J.C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Applied Physics Letters 76, 1926–1928 (2000)CrossRefGoogle Scholar
  17. 10.17.
    S. Guha, E. Gusev, M. Copel, L.A. Ragnarsson, and D.A. Buchanan, “Compatibility challenges for high-k materials integration into CMOS technology,” Mrs Bulletin 27, 226–229 (2002)Google Scholar
  18. 10.18.
    S. Guha, E. Cartier, M.A. Gribelyuk, N.A. Bojarczuk, and M.C. Copel, “Atomic beam deposition of lanthanum-and yttrium-based oxide thin films for gate dielectrics,” Applied Physics Letters 77, 2710–2712 (2000)CrossRefGoogle Scholar
  19. 10.19.
    J.J. Chambers, B.W. Busch, W.H. Schulte, T. Gustafsson, E. Garfunkel, S. Wang, D.M. Maher, T.M. Klein, and G.N. Parsons, “Effects of surface pretreatments on interface structure during formation of ultra-thin yttrium silicate dielectric films on silicon,” Applied Surface Science 181, 78–93 (2001)CrossRefGoogle Scholar
  20. 10.20.
    J.J. Chambers and G.N. Parsons, “Control of silicon interface reaction during oxidation of yttrium on silicon using oxygen and nitrogen surface pretreatments,” Applied Physics Letters 77, 2385–2387 (2000)CrossRefGoogle Scholar
  21. 10.21.
    H.J. Cho, C.S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, E. Dharmarajan, and J.C. Lee, “Novel Nitrogen Profile Engineering for Improved TaN/HfO2/Si MOSFET Performance,” Proceedings of IEEE IEDM 2001, 655–658 (2001)Google Scholar
  22. 10.22.
    S. Stemmer, D.O. Klenov, Z.Q. Chen, D. Niu, R.W. Ashcraft, and G.N. Parsons, “Reactions of Y2O3 films with (001) Si substrates and with polycrystalline Si capping layers,” Applied Physics Letters 81, 712–714 (2002)CrossRefGoogle Scholar
  23. 10.23.
    D. Niu, R.W. Ashcraft, and G.N. Parsons, “Water absorption and interface reactivity of yttrium oxide gate dielectrics on silicon,” Applied Physics Letters 80, 3575–3577 (2002)CrossRefGoogle Scholar
  24. 10.24.
    D. Niu, R.W. Ashcraft, Z. Chen, S. Stemmer, and G.N. Parsons, “Electron energy-loss spectroscopy analysis of interface structure of yttrium oxide gate dielectrics on silicon,” Applied Physics Letters 81, 676–678 (2002)CrossRefGoogle Scholar
  25. 10.25.
    D. Niu, R.W. Ashcraft, M.J. Kelly, J.J. Chambers, T.M. Klein, and G.N. Parsons, “Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-k gate dielectric applications,” Journal of Applied Physics 91, 6173–6180 (2002)Google Scholar
  26. 10.26.
    B.W. Busch, W.H. Schulte, E. Garfunkel, T. Gustafsson, W. Qi, R. Nieh, and J. Lee, “Oxygen exchange and transport in thin zirconia films on Si(100),” Physical Review B 62, R13290–R13293 (2000)CrossRefGoogle Scholar
  27. 10.27.
    K.P. Bastos, J. Morais, L. Miotti, R.P. Pezzi, G.V. Soares, I.J. R. Baumvol R.I. Hegde, H.H. Tseng, and P.J. Tobin, “Oxygen reaction-diffusion in metalorganic chemical vapor deposition HfO2 films annealed in O2,” Applied Physics Letters 81, 1669–1671 (2002)CrossRefGoogle Scholar
  28. 10.28.
    B.W. Busch, J. Kwo, M. Hong, J.P. Mannaerts, B.J. Sapjeta, W.H. Schulte, E. Garfunkel, and T. Gustafsson, “Interface reactions of high-k Y2O3 gate oxides with Si,” Applied Physics Letters 79, 2447–2449 (2001)CrossRefGoogle Scholar
  29. 10.29.
    T. Gougousi, M.J. Kelly, and G.N. Parsons, “The role of the OH species in high-k/polycrystalline silicon gate electrode interface reactions,” Applied Physics Letters 80, 4419–4421 (2002)CrossRefGoogle Scholar
  30. 10.30.
    T. Gougousi, M.J. Kelly, and G.N. Parsons, “Properties of La-silicate highk dielectric films formed by oxidation of La on Silicon”, Journal of Applied Physics (2002)Google Scholar
  31. 10.31.
    T.M. Klein, D. Niu, W.S. Epling, W. Li, D.M. Maher, C. Hobbs, R. Hegde, I.J.R. Baumvol, and G.N. Parsons, “Evidence of aluminum silicate formation during CVD of amorphous Al2O3 thin films on Si(100),” Applied Physics Letters 75, 4001–4003 (1999)CrossRefGoogle Scholar
  32. 10.32.
    J.J. Chambers and G.N. Parsons, “Physical and electrical characterization of ultrathin yttrium silicate insulators on silicon,” Journal of Applied Physics 90, 918–933 (2001)Google Scholar
  33. 10.33.
    V. Narayanan, S. Guha, M. Copel, N.A. Bojarczuk, P.L. Flaitz, and M. Gribelyuk, “Interface oxide formation and oxygen diffusion in rare earth oxide-silicon epitaxial heterostructures,” Applied Physics Letters 81, 4183–4185 (2002)CrossRefGoogle Scholar
  34. 10.34.
    F.U. Hillebrecht, M. Ronay, D. Rieger, and F.J. Himpsel “Enhancement of Si oxidation by cerium overlayers and formation of cerium silicate,” Physical Review B 34, 5377–5380 (1986)CrossRefGoogle Scholar
  35. 10.35.
    H.D. Ebinger and J.T. Yates Jr., “Electron-impact-induced oxidation of Al(111) in water vapor: Relation to the Cabrera-Mott mechanism,” Physical Review B 57, 1976–1984 (1998)CrossRefGoogle Scholar
  36. 10.36.
    N. Cabrera and N.F. Mott, “Theory of oxidation of metals,” Rep Prog Phys 12, 163 (1948)CrossRefGoogle Scholar
  37. 10.37.
    S. Campbell, private communication (2001)Google Scholar
  38. 10.38.
    T. Gougousi and G.N. Parsons, “Water absorption in high-k dielectrics,” submitted (2003)Google Scholar
  39. 10.39.
    M. Copel, E. Cartier, E.P. Gusev, S. Guha, N. Bojarczuk, and M. Poppeller, “Robustness of ultrathin aluminum oxide dielectrics on Si(001),” Applied Physics Letters 78, 2670–2672 (2001)CrossRefGoogle Scholar
  40. 10.40.
    B.W. Busch, W.H. Schulte, E. Garfunkel, T. Gustafsson, W. Qi, R. Nieh, and J. Lee, Applied Physics Letters 79, 2447–2449Google Scholar
  41. 10.41.
    D. Niu, R.W. Ashcraft, and G.N. Parsons, “Reaction rate limited oxidation at the metal oxide/silicon interface,” submitted (2003)Google Scholar
  42. 10.42.
    D. Niu, R.W. Ashcraft, Z. Chen, S. Stemmer, and G.N. Parsons, “Chemical, Physical, and Electrical Characterization of Oxygen Plasma Assisted Chemical Vapor Deposited Yttrium Oxide on Silicon,” Journal of the Electrochemical Society, 150, F102–F109 (2003)CrossRefGoogle Scholar
  43. 10.43.
    M. Ritala and M. Leskela, in Handbook of Thin Film Materials, Vol. 1, edited by H.S. Nalwa (Academic Press, 2001), Chap. 2Google Scholar
  44. 10.44.
    A. Mesarwi and A. Ignatiev, “X-ray photoemission study of Y-promoted oxidation of the Si(100) surface,” Surface Science 244, 15–21 (1991)CrossRefGoogle Scholar
  45. 10.45.
    G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, and R.S. Urdahl, “Intermixing at the tantalum oxide/silicon interface in gate dielectric structures,” Applied Physics Letters 73, 1517–1519 (1998)CrossRefGoogle Scholar
  46. 10.46.
    B.C. Hendrix, A.S. Borovik, C. Xu, J.F. Roeder, T.H. Baum, M.J. Bevan, M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, H. Bu, and L. Colombo, “Composition control of Hf1-xSixO2 films deposited on Si by chemical-vapor deposition using amide precursors,” Applied Physics Letters 80, 2362–2364 (2002)CrossRefGoogle Scholar
  47. 10.47.
    B.K. Park, J. Park, M. Cho, C.S. Hwang, K. Oh, Y. Han, D.Y. Yang, “Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing,” Applied Physics Letters 80, 2368–2370 (2002)CrossRefGoogle Scholar
  48. 10.48.
    G.D. Wilk and R.M. Wallace, “Hafnium and zirconium silicates for advanced gate dielectrics,” Journal of Applied Physics 87, 484–492 (2001)CrossRefGoogle Scholar
  49. 10.49.
    Y.-M. Sun, J. Lozano, H. Ho, H.J. Park, S. Veldman and J.M. White, “Interfacial silicon oxide formation during synthesis of ZrO2 on Si(100),” Applied Surface Science 161, 115 (2000)CrossRefGoogle Scholar
  50. 10.50.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of Xray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992)Google Scholar
  51. 10.51.
    T. Gougousi, M.J. Kelly, and G.N. Parsons, “Properties of La-silicate high-k dielectric films formed by oxidation of La on Silicon,” Journal of Applied Physics 93, 1691–1696 (2003)CrossRefGoogle Scholar
  52. 10.52.
    M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, and L. Colombo, “Application of HfSiON as a gate dielectric material,” Applied Physics Letters 80, 3183–3185 (2002)CrossRefGoogle Scholar
  53. 10.53.
    I. De, D. Johri, A. Srivastava, and C.M. Osburn, “Impact of gate work-function on device performance at the 50nm technology node,” Solid State Electronics 44, 1077–1080 (2000)CrossRefGoogle Scholar
  54. 10.54.
    J. Tersoff, “Theory of semiconductor heterojunctions: The role of quantum dipoles,” Physical Review B 30, 4874–4877 (1984)CrossRefGoogle Scholar
  55. 10.55.
    Y.-C. Yeo, P. Ranade, T.-J. King, and C. Hu, “Effect of High-k Gate Dielectric Materials on Metal and Silicon Gate Workfunctions,” IEEE Electron Device Letters 23, 342–344 (2002)CrossRefGoogle Scholar
  56. 10.56.
    D.C. Gilmer, R. Hegde, R. Cotton, R. Garcia, V. Dhandapani, D. Triyoso, D. Roan, A. Franke, R. Rai, L. Prabhu, C. Hobbs, J.M. Grant, L. La, S. Samavedam, B. Taylor, H. Tseng, and P. Tobin, “Compatibility of polycrystalline silicon gate deposition with HfO2 and Al2O3/HfO2 gate dielectrics,” Applied Physics Letters 81, 1288–1290 (2002)CrossRefGoogle Scholar
  57. 10.57.
    A. Callegari, E. Gousev, T. Zabel, and D. Lacey, “Thermal stability of polycrystalline silicon/metal oxide interfaces,” Applied Physics Letters 81, 4157–4158 (2002)CrossRefGoogle Scholar
  58. 10.58.
    K. Muraoka, “Suppression of silicidation in ZrO2/SiO2/Si structure by helium annealing,” Applied Physics Letters 81, 4171–4173 (2002)CrossRefGoogle Scholar
  59. 10.59.
    Y.-C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K.J. Yang, I. Polishchuk, T.-J. King, C. Hu, C.S. S, H. F. Luan, and D.-L. Kwong, “Dual-Metal Gate CMOS Technology with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electron Device Letters 22, 227–229 (2001)CrossRefGoogle Scholar
  60. 10.60.
    R. Lin, Q. Lu, P. Ranade, T.J. King, and C.M. Hu, “An adjustable work function technology using Mo gate for CMOS devices,” IEEE Electron Device Letters 23, 49–51 (2002)CrossRefGoogle Scholar
  61. 10.61.
    V. Misra, G.P. Heuss, and H. Zhong, “Use of metal-oxide-semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Applied Physics Letters 78, 4166–4168 (2001)CrossRefGoogle Scholar
  62. 10.62.
    H. Zhong, G. Huess, and V. Misra, “Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics,” Applied Physics Letters 78, 1134–1136 (2001)CrossRefGoogle Scholar
  63. 10.63.
    S.J. Lee and D.L. Kwong, “Ta/TaNx Metal Gate Electrodes for Advanced CMOS Devices,” Journal of Semiconductor Technology and Science 2, 180–184 (2002)Google Scholar
  64. 10.64.
    H. Zhong, G. Heuss, and V. Misra, “Electrical Properties of RuO2 Gate Electrodes for Dual Metal Gate Si-CMOS,” IEEE Electron Device Letters 21, 593–595 (2000)CrossRefGoogle Scholar
  65. 10.65.
    V. Misra, H. Zhong, and H. Lazar, “Electrical Properties of Ru-Based Alloy Gate Electrodes for Dual Metal Gate Si-CMOS,” IEEE Electron Device Letters 23, 354–356 (2002)CrossRefGoogle Scholar
  66. 10.66.
    H. Zhong, S.N. Hong, Y.S. Suh, H. Lazar, G. Heuss, and V. Misra, “Properties of Ru-Ta Alloys as Gate Electrodes for NMOS and PMOS Silicon Devices,” Proceedings of the International Electronic Device Meeting 2001, 467–470 (2001)Google Scholar
  67. 10.67.
    I. Polishchuk, P. Ranande, T.-J. King, and C. Hu, “Dual Work Function Metal Gate CMOS Transistors by Ni-Ti Interdiffusion,” IEEE Electron Device Letters 23, 200–202 (2002)CrossRefGoogle Scholar
  68. 10.68.
    T.H. Cha, D.G. Park, T.K. Kim, S.A. Jang, I.S. Yeo, J.S. Roh, and J.W. Park, “Work function and thermal stability of Ti(1−x)Al(x)N(y) for dual metal gate electrodes,” Applied Physics Letters 81, 4192–4194, (2002)CrossRefGoogle Scholar
  69. 10.69.
    Y.S. Suh, G. Heuss, H. Zhong, S.N. Hong, and V. Misra, “Electrical Characterisitics of TaSixNy Gate Electrodes for Dual Gate Si-CMOS Devices,” Symposium on VLSI Technology Digest of Technical Papers 2001, 47–48 (2001)Google Scholar
  70. 10.70.
    S.M. Rossnagel, A. Sherman, and F. Turner, “Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers,” Journal of Vacuum Science and Technology B 18, 2016–2020 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G.N. Parsons

There are no affiliations available

Personalised recommendations