Skip to main content

Applications of the Piezoelectric Quartz Crystal Microbalance for Microdevice Development

  • Chapter
Microscale Diagnostic Techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aastrup T, Wadsak M, Leygraf C, et al.(2000) In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide. J Electrochem Soc 147(7): 2543–2551

    Google Scholar 

  2. Ashurst W, et al. (2001) Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the octadecyltrichlorosilane self-assembled monolayer. J Microelectromechanical systems 10(1): 41–49

    Google Scholar 

  3. Baudry J, Charlaix E, et al. (2001) Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17: 5232–5236

    Article  Google Scholar 

  4. Beerschwinger U, Albrecht T, Mathieson D (1995) Wear at microscopic scales and light loads for MEMS applications. Wear 181: 426–435

    Google Scholar 

  5. Borovsky B, Mason BL, Krim J (2000) Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J Appl Phys 88(7): 4017–4021

    Article  Google Scholar 

  6. In preparation.

    Google Scholar 

  7. Borovsky B, Krim J, Syed Asif SA, Wahl KJ (2001) Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance. Accepted J Appl Phys

    Google Scholar 

  8. Bruschi L, Delfitto G, Mistura G (1999) Inexpensive but accurate driving circuits for quartz crystal microbalances. Rev Sci Instrum 70(1): 153–157

    Article  Google Scholar 

  9. Bruschi L, Mistura G (2001) Measurement of friction of thin films by means of a quartz microbalance in the presence of a finite vapor pressure. Phys Rev B 63(23): 235411

    Article  Google Scholar 

  10. Bucur R, Mecea V (1980) Surf Technol 11: 305

    Article  Google Scholar 

  11. Buczek D, Sastri S (1980) J Appl Phys 51: 5013

    Article  Google Scholar 

  12. Caruso F, Rodda E, Furlong DN (1996) Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalance electrodes. J Coll Interf Sci 178: 104–115

    Article  Google Scholar 

  13. Chandrashekar S, Bhushan B (1992) Wear 153: 79

    Google Scholar 

  14. Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87(5): 054504

    Article  Google Scholar 

  15. Crooks R, et al.(1997) Interactions between self-assembled monolayers and an organophosphate. Faraday Discuss 107: 285–305

    Article  Google Scholar 

  16. Daikhin L, Gileadi E, et al. (2000) Slippage at adsorbate-electrolyte interface. Response of electrochemical quartz crystal microbalance to adsorption. Electrochim Acta 45: 3615–3621

    Article  Google Scholar 

  17. Daikhin L, Urbakh M (1997) Influence of surface roughness on the quartz crystal microbalance response in a solution. Faraday Discuss 107: 27–38

    Article  Google Scholar 

  18. Daly C, Krim J (1994) Applications of a combined scanning tunneling microscope and quartz microbalance. In: Cohen SH, et al. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy. Plenum Press, New York, pp

    Google Scholar 

  19. Dayo A, Alnasrallah W, Krim J (1998) Superconductivity-dependent sliding friction. Phys Rev Lett 80(8): 1690–1693

    Article  Google Scholar 

  20. Domack A, Johannsmann D (1996) Plastification during sorption of polymeric thin films: a quartz resonator study. J Appl Phys 80(5): 2599–2604

    Article  Google Scholar 

  21. Domack A, Johannsmann D (1998) Shear birefringence measurements on polymer thin films deposited on quartz resonators. J Appl Phys 83(3): 1286–1295

    Article  Google Scholar 

  22. Dugger MT (in press) Quantification of Friction in Microsystem Contacts. In: Nanotribology: Critical Assessment and Future Research Needs.

    Google Scholar 

  23. Dugger M, Senft D, Nelson G (1999) Friction and durability of chemisorbed organic lubricants for MEMS. In: Tsukruk VV and Wahl KJ (ed) Microstructure and Tribology of Polymer Surfaces. American Chemical Society, Washington, pp. 455–473

    Google Scholar 

  24. Dultsev FN, et al. (2001) Direct and Quantitative detection of bacteriophage by ‘hearing’ surface detachment using a QCM. Anal Chem 73: 3935–3939

    Article  Google Scholar 

  25. EerNisse EP (1972) J Appl Phys 43: 1330

    Article  Google Scholar 

  26. Fawcett NC, Craven RD, Zhang P, Evans JA (1998) QCMresponse to solvated, tethered macromolecules. Anal Chem 70: 2876–2880

    Article  Google Scholar 

  27. Filiatre C, et al. (1994) Transmission-line model for immersed quartz-crystal sensors. Sensors and Actuators A44: 137–144

    Google Scholar 

  28. Flanigan CM, Desai M, Shull KR, (2000) Contact mechanics studies with the quartz crystal microbalance. Langmuir 16: 9825–9829

    Article  Google Scholar 

  29. Fredriksson C, Kihlman S, Rodahl M, Kasemo B (1998) The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir 14: 248–251

    Article  Google Scholar 

  30. Garrell RL, Chadwick JE (1994) Structure, reactivity and microrheology in self-assembled monolayers. Colloids Surf A 93: 59–72

    Article  Google Scholar 

  31. Ginzburg M, et al. (2000) Layer-by-layer self-assembly of organic-organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir 16: 9609–9614

    Article  Google Scholar 

  32. Grate J, et al.(1993) Acoustic wave microsensors. Anal Chem 65(22): A987–A996

    Google Scholar 

  33. Grate J, Wenzel SW, White RM (1991) Flexural plate wave devices for chemical analysis. Anal Chem 63: 1552–1561

    Google Scholar 

  34. Gupta BK, Bhushan B, Chevallier J (1994) Modification of tribological properties of silicon by boron ion-implantation. Tribol Trans 37(3): 601–607

    Google Scholar 

  35. Idziak S, et al.(1994) The X-ray surface forces apparatus: structure of a thin smectic liquid crystal film under confinement. Science 264: 1915–1918

    Google Scholar 

  36. Itoh J, Sasaki T, et al. (1997) In situ simultaneous measurement with IR-RAS and QCM for investigation of corrosion of copper in a gaseous environment. Corros Sci 39(1): 193–197

    Google Scholar 

  37. Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultures on shear wave resonators. Eur Biophys J 25:93–103

    Google Scholar 

  38. Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B 46(12): 7808–7815

    Article  Google Scholar 

  39. Kanazawa K, Gordon II J (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57: 1770–1771

    Article  Google Scholar 

  40. Karis T (2001) Tribochemistry in contact recording. Trib Lett 10(3): 149–162

    Article  Google Scholar 

  41. Kasemo B, Tornqvist E (1978) Surf Sci 77: 209

    Article  Google Scholar 

  42. Katz A, Ward D (1996) Probing solvent dynamics in concentrated polymer films sith a high frequency shear mode quartz resonator. J Appl Phys 80(7): 4153–4163

    Article  Google Scholar 

  43. Kim JM, Chang SM, Muramatsu H (1999) Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl Phys Lett 74(3): 466–468

    Google Scholar 

  44. Kobatake E, et al. (2000) Immunoassay systems based on immunoliposomes consisting of genetically engineered single-chain antibody. Sens Actuat B 65: 42–45

    Google Scholar 

  45. Krim J, Solina H, Chiarello R (1991) Nanotribology of a Kr monolayer: A quartz crystal microbalance study of atomic-scale friction. Phys Rev Lett 66(2): 181–184

    Article  Google Scholar 

  46. Krim J, Widom A (1988) Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys Rev B 38(17): 12184–12189

    Article  Google Scholar 

  47. Krozer R, Kasemo B (1980) Surf. Sci. 97: L339

    Article  Google Scholar 

  48. Kunze D, Peters O, Sauerbrey G, Angew (1967) Z Phys 22: 69

    Google Scholar 

  49. Laschitsch A, Johannsmann D (1999) High frequency tribological investigations on quartz resonator surfaces. J Appl Phys 85(7): 3759–3765

    Article  Google Scholar 

  50. Lea M, Fozooni P (1985) The transverse acoustic impedance of an inhomogeneous viscous liquid. Ultrasonics 23: 133–137

    Article  Google Scholar 

  51. Lee SY, Staehle RW (1997) Adsorbtion studies of water on copper, nickel, and iron: Assessment of the polarization model. Z Metallkd 88(10): 824–831

    Google Scholar 

  52. Levenson L (1967) C R Acad Sci, Paris, 263: 1217

    Google Scholar 

  53. Liebau M, Hildebrand A, Neubert RHH (2001) Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur Biophys J 30: 42–52

    Article  Google Scholar 

  54. Lin Z, Hill RM, Davis HT, Ward MD (1994) Determination of wetting velocities of surfactant superspreaders with the quartz-crystal microbalance. Langmuir 10(11):4060–4068

    Article  Google Scholar 

  55. Lu C, Czanderna AW (1984) Methods and Phenomena 7: Applications of Piezoelectric Quartz Crystal Microbalances (eds) Elsevier Press, New York, pp

    Google Scholar 

  56. Lu C, Lewis O (1972) J Appl Phys 43: 4385

    Article  Google Scholar 

  57. Lucklum R, et al. (1997) Determination of complex shear modulus with thickness shear mode resonators. J Phys D 30: 346–356

    Article  Google Scholar 

  58. Lucklum R, Hauptmann P (1997) Determination of polymer shear modulus with quartz crystal microbalance. Faraday Discuss 107: 123–140

    Article  Google Scholar 

  59. Lucklum R, Hauptmann P (2000) The QCM: mass sensitivity, viscoelasticity and acoustic amplification. Sensors and Actuators B 70: 30–36

    Google Scholar 

  60. Luengo G, et al.(1997) Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30(8): 2482–2494

    Article  Google Scholar 

  61. Maboudian R, Howe RT (1997) J Vac Sci Technol B15: 1

    Article  Google Scholar 

  62. Majumder S, McGruer NE, Adams GG, et al. (2001) Study of contacts in an electrostatically actuated microswitch. Sensor Actuat A93(1): 19–26

    Google Scholar 

  63. Martin SJ, Frye GC (1990) Surface acoustic wave response to changes in viscoelastic film properties. Appl Phys Lett 57(18): 1867–1869

    Article  Google Scholar 

  64. Martin SJ, Frye GC, Senturia SD (1994) Dynamics and response of polymer-coated surface acoustic wave devices: Effect of viscoelastic properties and film resonance. Anal Chem 66(14): 2201–2219

    Article  Google Scholar 

  65. Martin S, Granstaff V, Frye G (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63: 2272–2281

    Article  Google Scholar 

  66. Martin BA, Hager HE, (1989) J Appl Phys 65: 2637; ibid (1989) J Appl Phys 65: 2630

    Google Scholar 

  67. Mate C, Marchon B (2000) Shear response of molecularly thin liquid films to an applied air stress. Phys Rev Lett 85(18): 3902–3905

    Article  Google Scholar 

  68. McHale G, Lucklum R, Newton MI, Cohen JA (2000) Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J Appl Phys 88(12): 7304–7312

    Article  Google Scholar 

  69. McKenna L, Newton MI, et al. (2001) Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. J Appl Phys 89(1):676–680

    Article  Google Scholar 

  70. Merrill PB, Perry SS (1998) Fundamental measurements of the friction of clean and oxygen-covered VC(100) with ultrahigh vacuum atomic force microscopy: evidence for electronic contributions to interfacial friction. Surf Sci 418: 342–351

    Article  Google Scholar 

  71. Murray B, Deshaires C, (2000) Monitoring protein fouling of metal surfaces via a quartz crystal microbalance. J Coll Interf Sci 227: 32–41

    Article  Google Scholar 

  72. Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85(5): 980–983

    Article  Google Scholar 

  73. Pit R, Hervet H, Leger L (1999) Friction and slip of a simple liquid at a solid surface. Tribology Lett 7: 147–152

    Article  Google Scholar 

  74. Polson N, Hayes M (2001) Microfluidics: Controlling fluids in small places. Anal Chem 73(11): 312A–319A

    Article  Google Scholar 

  75. Radhakrishnan G, Adams PM, Robertson R, Cole R (2000) Integration of wearresistant titanium carbide coatings into MEMS fabrication process. Trib Lett 8: 133–137

    Article  Google Scholar 

  76. Reed CE, Kanazawa KK, Kaufman JH (1990) Physical description of a viscoelastically loaded AT-cut quartz resonator. J Appl Phys 68(5): 1993–2001

    Article  Google Scholar 

  77. Rajan N, et al.(1998) Surf Coat Technol 108–109: 391

    Google Scholar 

  78. Reinisch L, Kaiser RD, Krim J (1989) Measurement of protein hydration shells using a quartz microbalance. Phys Rev Lett 63(16): 1743–1746

    Article  Google Scholar 

  79. Reiter G, Demirel A, Granick S (1994) From static to kinetic friction in confined liquid films. Science 263: 1741–1744

    Google Scholar 

  80. Ricco A, et al.(1997) Single-monolayer in-situ modulus measurements using a SAW device. Faraday Discuss 107: 247–258

    Article  Google Scholar 

  81. Robbins RO, Krim J (1998) Energy dissipation in interfacial friction. MRS Bulletin: 23–26

    Google Scholar 

  82. Rodahl M et al. (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66(7): 3924

    Article  Google Scholar 

  83. Rodahl M, Hook F, Fredriksson C, et al.(1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107: 229–246

    Article  Google Scholar 

  84. Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz crystal microbalance. Sens Actuat A 54: 448–456

    Google Scholar 

  85. Sakai G, Saiki T, Uda T, Miura N, Yamazoe N (1997) Evaluation of binding of human serum albumin (HSA) to monoclonal and polyclonal antibody by means of piezoelectric immunosensing technique. Sens Actuat B 42: 89–94

    Google Scholar 

  86. Sasaki A, Katsumata A, Iwata F, Aoyama H (1994) Scanning shearing-stress microscopy of gold thin films. Jpn J Appl Phys 33: L547–L549; (1994) Scanning shearing-stress microscope. Appl Phys Lett 64(1): 124–125

    Google Scholar 

  87. Sauerbrey GZ (1957) Phys Verhandl 8: 113

    Google Scholar 

  88. Sauerbrey GZ (1959) Z Phys 115: 206

    Google Scholar 

  89. Scherge M, Li X, Schaefer JA (1999) The effect of water on friction of MEMS. Trib Lett 6: 215–220

    Article  Google Scholar 

  90. Schmitt RF, et al.(2001) Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes. Sens Actuat B 76: 95–102

    Google Scholar 

  91. Shinn ND, Mayer TM, Michalske TA (1999) Structure-dependent properties of C9-alkanethiol monolayers. Trib Lett 7(2–3): 67–71

    Google Scholar 

  92. Skaife JJ, Abbott NL (1999) Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals. Chem Mater 11: 612–623

    Article  Google Scholar 

  93. Stockbridge CD (1966) In: Vacuum Microbalance Techniques. Behrndt KH (eds) Vol 5, Plenum Press, New York, p 163

    Google Scholar 

  94. Tai Y-C, Muller RS (1989) Sens Actuators 20: 41

    Google Scholar 

  95. Telegdi J, et al. (2000) EQCM study of copper and iron corrosion inhibition in the presence of organic inhibitors and biocides. Electrochim Acta 45(22–23): 3639–3647

    Google Scholar 

  96. Teuscher JH, et al. (1997) Phase transitions in thin alkane films and alkanethiolate monolayers on gold detected with a thickness shear mode device. Faraday Discuss 107: 399–416

    Article  Google Scholar 

  97. Thompson M, et al.(1991) Thickness-shear mode acoustic wave sensors in the liquid phase, a review. Analyst 116: 881–889

    Article  Google Scholar 

  98. Tomassone MS, Widom A (1997) Electronic friction forces on molecules moving near metals. Phys Rev B 56(8): 4938–4943

    Article  Google Scholar 

  99. Tronin A, Dubrovsky T, Radicchi G, Nicolini C (1996) Optimization of IgG Langmuir film deposition for application as sensing elements. Sens Actuat B 34: 276–282

    Google Scholar 

  100. Viitala T, et al. (2000) Protein immobilization to a partially cross-linked organic monolayer. Langmuir 16: 4953–4961

    Article  Google Scholar 

  101. Vikholm I, Albers WM, (1998) Oriented immobilization of antibodies for immunosensing. Langmuir 14: 3865–3872

    Article  Google Scholar 

  102. Vikholm I, Gyorvary E, Peltonen J (1996) Incorporation of lipid-tagged single-chain antibodies into lipid monolayers and the interaction with antigen. Langmuir 12: 3276–3281

    Article  Google Scholar 

  103. Wadsak M, et al. (2000) Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM. Surf Sci 454–456: 246–250

    Google Scholar 

  104. Wang DF, Kato K (2001) Tribological evaluation of carbon coatings with and without nitrogen incorporation applicable to MicroElectroMechanical systems. Sensor Actuat A 93(3): 251–257

    Google Scholar 

  105. Watts ET, Krim J, Widom A (1990) Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates. Phys Rev B41(6):3466–3472

    Article  Google Scholar 

  106. Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28: 26–37

    Article  Google Scholar 

  107. Weiss P (2000) The little engines that couldn’t. Science News 158(4): 56–58

    Google Scholar 

  108. White R (1997) Acoustic interactions from Faraday’s crispations to MEMS. Faraday Discuss 107: 1–13

    Article  Google Scholar 

  109. Widom A, Krim J (1994) Spreading diffusion and its relation to sliding friction in molecularly thin adsorbed films. Phys Rev E 49(5): 4154–4156

    Article  Google Scholar 

  110. Windeln J et al. (2001) Applied surface analysis in magnetic storage technology. Appl Surf Sci 179: 167–180

    Article  Google Scholar 

  111. Witte G, Weiss K, Jakob P, Braun J, Kostov KL, Woll CH (1998) Damping of molecular motion on a solid substrate: evidence for electron-hole pair creation. Phys Rev Lett 80(1): 121–124

    Article  Google Scholar 

  112. Wolff O, Seydel E, Johannsmann D (1997) Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Discuss 107: 91–104

    Article  Google Scholar 

  113. Xiao C, Yang M, Sui S (1998) DNA-containing organized molecular structure based on controlled assembly on supported monolayers. Thin Solid Films 327–329: 647–651

    Google Scholar 

  114. Yamada R, Ye S, Uosaki K (1996) Novel scanning probe microscope for local elasticity measurement. Jpn J Appl Phys 35: L846–L848

    Google Scholar 

  115. Yang M, Thompson M, Duncan-Hewitt W (1993) Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids. Langmuir 9:802–811

    Google Scholar 

  116. Yoshizawa H, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J Phys Chem 97: 11300–11313

    Google Scholar 

  117. Zhou T, Marx KA, Warren M, Schulze H, Braunhut S (2000) The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol Prog 16: 268–277

    Article  Google Scholar 

  118. Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87(9): 096105

    Google Scholar 

  119. Zhu XY, Houston JE (1999) Molecular lubricants for silicon-based microelectrome-chanical systems (MEMS): a novel strategy. Trib Lett 7: 87–90

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bender, J.W., Krim, J. (2005). Applications of the Piezoelectric Quartz Crystal Microbalance for Microdevice Development. In: Breuer, K.S. (eds) Microscale Diagnostic Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26449-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26449-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23099-1

  • Online ISBN: 978-3-540-26449-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics