Applications of the Piezoelectric Quartz Crystal Microbalance for Microdevice Development

  • J. W. Bender
  • J. Krim


Frequency Shift Quartz Crystal Microbalance Acoustic Impedance Slip Length Transmission Line Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aastrup T, Wadsak M, Leygraf C, et al.(2000) In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide. J Electrochem Soc 147(7): 2543–2551Google Scholar
  2. [2]
    Ashurst W, et al. (2001) Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the octadecyltrichlorosilane self-assembled monolayer. J Microelectromechanical systems 10(1): 41–49Google Scholar
  3. [3]
    Baudry J, Charlaix E, et al. (2001) Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir 17: 5232–5236CrossRefGoogle Scholar
  4. [4]
    Beerschwinger U, Albrecht T, Mathieson D (1995) Wear at microscopic scales and light loads for MEMS applications. Wear 181: 426–435Google Scholar
  5. [5]
    Borovsky B, Mason BL, Krim J (2000) Scanning tunneling microscope measurements of the amplitude of vibration of a quartz crystal oscillator. J Appl Phys 88(7): 4017–4021CrossRefGoogle Scholar
  6. [6]
    In preparation.Google Scholar
  7. [7]
    Borovsky B, Krim J, Syed Asif SA, Wahl KJ (2001) Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance. Accepted J Appl PhysGoogle Scholar
  8. [8]
    Bruschi L, Delfitto G, Mistura G (1999) Inexpensive but accurate driving circuits for quartz crystal microbalances. Rev Sci Instrum 70(1): 153–157CrossRefGoogle Scholar
  9. [9]
    Bruschi L, Mistura G (2001) Measurement of friction of thin films by means of a quartz microbalance in the presence of a finite vapor pressure. Phys Rev B 63(23): 235411CrossRefGoogle Scholar
  10. [10]
    Bucur R, Mecea V (1980) Surf Technol 11: 305CrossRefGoogle Scholar
  11. [11]
    Buczek D, Sastri S (1980) J Appl Phys 51: 5013CrossRefGoogle Scholar
  12. [12]
    Caruso F, Rodda E, Furlong DN (1996) Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalance electrodes. J Coll Interf Sci 178: 104–115CrossRefGoogle Scholar
  13. [13]
    Chandrashekar S, Bhushan B (1992) Wear 153: 79Google Scholar
  14. [14]
    Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87(5): 054504CrossRefGoogle Scholar
  15. [15]
    Crooks R, et al.(1997) Interactions between self-assembled monolayers and an organophosphate. Faraday Discuss 107: 285–305CrossRefGoogle Scholar
  16. [16]
    Daikhin L, Gileadi E, et al. (2000) Slippage at adsorbate-electrolyte interface. Response of electrochemical quartz crystal microbalance to adsorption. Electrochim Acta 45: 3615–3621CrossRefGoogle Scholar
  17. [17]
    Daikhin L, Urbakh M (1997) Influence of surface roughness on the quartz crystal microbalance response in a solution. Faraday Discuss 107: 27–38CrossRefGoogle Scholar
  18. [18]
    Daly C, Krim J (1994) Applications of a combined scanning tunneling microscope and quartz microbalance. In: Cohen SH, et al. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy. Plenum Press, New York, ppGoogle Scholar
  19. [19]
    Dayo A, Alnasrallah W, Krim J (1998) Superconductivity-dependent sliding friction. Phys Rev Lett 80(8): 1690–1693CrossRefGoogle Scholar
  20. [20]
    Domack A, Johannsmann D (1996) Plastification during sorption of polymeric thin films: a quartz resonator study. J Appl Phys 80(5): 2599–2604CrossRefGoogle Scholar
  21. [21]
    Domack A, Johannsmann D (1998) Shear birefringence measurements on polymer thin films deposited on quartz resonators. J Appl Phys 83(3): 1286–1295CrossRefGoogle Scholar
  22. [22]
    Dugger MT (in press) Quantification of Friction in Microsystem Contacts. In: Nanotribology: Critical Assessment and Future Research Needs.Google Scholar
  23. [23]
    Dugger M, Senft D, Nelson G (1999) Friction and durability of chemisorbed organic lubricants for MEMS. In: Tsukruk VV and Wahl KJ (ed) Microstructure and Tribology of Polymer Surfaces. American Chemical Society, Washington, pp. 455–473Google Scholar
  24. [24]
    Dultsev FN, et al. (2001) Direct and Quantitative detection of bacteriophage by ‘hearing’ surface detachment using a QCM. Anal Chem 73: 3935–3939CrossRefGoogle Scholar
  25. [25]
    EerNisse EP (1972) J Appl Phys 43: 1330CrossRefGoogle Scholar
  26. [26]
    Fawcett NC, Craven RD, Zhang P, Evans JA (1998) QCMresponse to solvated, tethered macromolecules. Anal Chem 70: 2876–2880CrossRefGoogle Scholar
  27. [27]
    Filiatre C, et al. (1994) Transmission-line model for immersed quartz-crystal sensors. Sensors and Actuators A44: 137–144Google Scholar
  28. [28]
    Flanigan CM, Desai M, Shull KR, (2000) Contact mechanics studies with the quartz crystal microbalance. Langmuir 16: 9825–9829CrossRefGoogle Scholar
  29. [29]
    Fredriksson C, Kihlman S, Rodahl M, Kasemo B (1998) The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir 14: 248–251CrossRefGoogle Scholar
  30. [30]
    Garrell RL, Chadwick JE (1994) Structure, reactivity and microrheology in self-assembled monolayers. Colloids Surf A 93: 59–72CrossRefGoogle Scholar
  31. [31]
    Ginzburg M, et al. (2000) Layer-by-layer self-assembly of organic-organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir 16: 9609–9614CrossRefGoogle Scholar
  32. [32]
    Grate J, et al.(1993) Acoustic wave microsensors. Anal Chem 65(22): A987–A996Google Scholar
  33. [33]
    Grate J, Wenzel SW, White RM (1991) Flexural plate wave devices for chemical analysis. Anal Chem 63: 1552–1561Google Scholar
  34. [34]
    Gupta BK, Bhushan B, Chevallier J (1994) Modification of tribological properties of silicon by boron ion-implantation. Tribol Trans 37(3): 601–607Google Scholar
  35. [35]
    Idziak S, et al.(1994) The X-ray surface forces apparatus: structure of a thin smectic liquid crystal film under confinement. Science 264: 1915–1918Google Scholar
  36. [36]
    Itoh J, Sasaki T, et al. (1997) In situ simultaneous measurement with IR-RAS and QCM for investigation of corrosion of copper in a gaseous environment. Corros Sci 39(1): 193–197Google Scholar
  37. [37]
    Janshoff A, Wegener J, Sieber M, Galla H-J (1996) Double-mode impedance analysis of epithelial cell monolayers cultures on shear wave resonators. Eur Biophys J 25:93–103Google Scholar
  38. [38]
    Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B 46(12): 7808–7815CrossRefGoogle Scholar
  39. [39]
    Kanazawa K, Gordon II J (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57: 1770–1771CrossRefGoogle Scholar
  40. [40]
    Karis T (2001) Tribochemistry in contact recording. Trib Lett 10(3): 149–162CrossRefGoogle Scholar
  41. [41]
    Kasemo B, Tornqvist E (1978) Surf Sci 77: 209CrossRefGoogle Scholar
  42. [42]
    Katz A, Ward D (1996) Probing solvent dynamics in concentrated polymer films sith a high frequency shear mode quartz resonator. J Appl Phys 80(7): 4153–4163CrossRefGoogle Scholar
  43. [43]
    Kim JM, Chang SM, Muramatsu H (1999) Scanning localized viscoelastic image using a quartz crystal resonator combined with an atomic force microscopy. Appl Phys Lett 74(3): 466–468Google Scholar
  44. [44]
    Kobatake E, et al. (2000) Immunoassay systems based on immunoliposomes consisting of genetically engineered single-chain antibody. Sens Actuat B 65: 42–45Google Scholar
  45. [45]
    Krim J, Solina H, Chiarello R (1991) Nanotribology of a Kr monolayer: A quartz crystal microbalance study of atomic-scale friction. Phys Rev Lett 66(2): 181–184CrossRefGoogle Scholar
  46. [46]
    Krim J, Widom A (1988) Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys Rev B 38(17): 12184–12189CrossRefGoogle Scholar
  47. [47]
    Krozer R, Kasemo B (1980) Surf. Sci. 97: L339CrossRefGoogle Scholar
  48. [48]
    Kunze D, Peters O, Sauerbrey G, Angew (1967) Z Phys 22: 69Google Scholar
  49. [49]
    Laschitsch A, Johannsmann D (1999) High frequency tribological investigations on quartz resonator surfaces. J Appl Phys 85(7): 3759–3765CrossRefGoogle Scholar
  50. [50]
    Lea M, Fozooni P (1985) The transverse acoustic impedance of an inhomogeneous viscous liquid. Ultrasonics 23: 133–137CrossRefGoogle Scholar
  51. [51]
    Lee SY, Staehle RW (1997) Adsorbtion studies of water on copper, nickel, and iron: Assessment of the polarization model. Z Metallkd 88(10): 824–831Google Scholar
  52. [52]
    Levenson L (1967) C R Acad Sci, Paris, 263: 1217Google Scholar
  53. [53]
    Liebau M, Hildebrand A, Neubert RHH (2001) Bioadhesion of supramolecular structures at supported planar bilayers as studied by the quartz crystal microbalance. Eur Biophys J 30: 42–52CrossRefGoogle Scholar
  54. [54]
    Lin Z, Hill RM, Davis HT, Ward MD (1994) Determination of wetting velocities of surfactant superspreaders with the quartz-crystal microbalance. Langmuir 10(11):4060–4068CrossRefGoogle Scholar
  55. [55]
    Lu C, Czanderna AW (1984) Methods and Phenomena 7: Applications of Piezoelectric Quartz Crystal Microbalances (eds) Elsevier Press, New York, ppGoogle Scholar
  56. [56]
    Lu C, Lewis O (1972) J Appl Phys 43: 4385CrossRefGoogle Scholar
  57. [57]
    Lucklum R, et al. (1997) Determination of complex shear modulus with thickness shear mode resonators. J Phys D 30: 346–356CrossRefGoogle Scholar
  58. [58]
    Lucklum R, Hauptmann P (1997) Determination of polymer shear modulus with quartz crystal microbalance. Faraday Discuss 107: 123–140CrossRefGoogle Scholar
  59. [59]
    Lucklum R, Hauptmann P (2000) The QCM: mass sensitivity, viscoelasticity and acoustic amplification. Sensors and Actuators B 70: 30–36Google Scholar
  60. [60]
    Luengo G, et al.(1997) Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30(8): 2482–2494CrossRefGoogle Scholar
  61. [61]
    Maboudian R, Howe RT (1997) J Vac Sci Technol B15: 1CrossRefGoogle Scholar
  62. [62]
    Majumder S, McGruer NE, Adams GG, et al. (2001) Study of contacts in an electrostatically actuated microswitch. Sensor Actuat A93(1): 19–26Google Scholar
  63. [63]
    Martin SJ, Frye GC (1990) Surface acoustic wave response to changes in viscoelastic film properties. Appl Phys Lett 57(18): 1867–1869CrossRefGoogle Scholar
  64. [64]
    Martin SJ, Frye GC, Senturia SD (1994) Dynamics and response of polymer-coated surface acoustic wave devices: Effect of viscoelastic properties and film resonance. Anal Chem 66(14): 2201–2219CrossRefGoogle Scholar
  65. [65]
    Martin S, Granstaff V, Frye G (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63: 2272–2281CrossRefGoogle Scholar
  66. [66]
    Martin BA, Hager HE, (1989) J Appl Phys 65: 2637; ibid (1989) J Appl Phys 65: 2630Google Scholar
  67. [67]
    Mate C, Marchon B (2000) Shear response of molecularly thin liquid films to an applied air stress. Phys Rev Lett 85(18): 3902–3905CrossRefGoogle Scholar
  68. [68]
    McHale G, Lucklum R, Newton MI, Cohen JA (2000) Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J Appl Phys 88(12): 7304–7312CrossRefGoogle Scholar
  69. [69]
    McKenna L, Newton MI, et al. (2001) Compressional acoustic wave generation in microdroplets of water in contact with quartz crystal resonators. J Appl Phys 89(1):676–680CrossRefGoogle Scholar
  70. [70]
    Merrill PB, Perry SS (1998) Fundamental measurements of the friction of clean and oxygen-covered VC(100) with ultrahigh vacuum atomic force microscopy: evidence for electronic contributions to interfacial friction. Surf Sci 418: 342–351CrossRefGoogle Scholar
  71. [71]
    Murray B, Deshaires C, (2000) Monitoring protein fouling of metal surfaces via a quartz crystal microbalance. J Coll Interf Sci 227: 32–41CrossRefGoogle Scholar
  72. [72]
    Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85(5): 980–983CrossRefGoogle Scholar
  73. [73]
    Pit R, Hervet H, Leger L (1999) Friction and slip of a simple liquid at a solid surface. Tribology Lett 7: 147–152CrossRefGoogle Scholar
  74. [74]
    Polson N, Hayes M (2001) Microfluidics: Controlling fluids in small places. Anal Chem 73(11): 312A–319ACrossRefGoogle Scholar
  75. [75]
    Radhakrishnan G, Adams PM, Robertson R, Cole R (2000) Integration of wearresistant titanium carbide coatings into MEMS fabrication process. Trib Lett 8: 133–137CrossRefGoogle Scholar
  76. [76]
    Reed CE, Kanazawa KK, Kaufman JH (1990) Physical description of a viscoelastically loaded AT-cut quartz resonator. J Appl Phys 68(5): 1993–2001CrossRefGoogle Scholar
  77. [77]
    Rajan N, et al.(1998) Surf Coat Technol 108–109: 391Google Scholar
  78. [78]
    Reinisch L, Kaiser RD, Krim J (1989) Measurement of protein hydration shells using a quartz microbalance. Phys Rev Lett 63(16): 1743–1746CrossRefGoogle Scholar
  79. [79]
    Reiter G, Demirel A, Granick S (1994) From static to kinetic friction in confined liquid films. Science 263: 1741–1744Google Scholar
  80. [80]
    Ricco A, et al.(1997) Single-monolayer in-situ modulus measurements using a SAW device. Faraday Discuss 107: 247–258CrossRefGoogle Scholar
  81. [81]
    Robbins RO, Krim J (1998) Energy dissipation in interfacial friction. MRS Bulletin: 23–26Google Scholar
  82. [82]
    Rodahl M et al. (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66(7): 3924CrossRefGoogle Scholar
  83. [83]
    Rodahl M, Hook F, Fredriksson C, et al.(1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107: 229–246CrossRefGoogle Scholar
  84. [84]
    Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz crystal microbalance. Sens Actuat A 54: 448–456Google Scholar
  85. [85]
    Sakai G, Saiki T, Uda T, Miura N, Yamazoe N (1997) Evaluation of binding of human serum albumin (HSA) to monoclonal and polyclonal antibody by means of piezoelectric immunosensing technique. Sens Actuat B 42: 89–94Google Scholar
  86. [86]
    Sasaki A, Katsumata A, Iwata F, Aoyama H (1994) Scanning shearing-stress microscopy of gold thin films. Jpn J Appl Phys 33: L547–L549; (1994) Scanning shearing-stress microscope. Appl Phys Lett 64(1): 124–125Google Scholar
  87. [87]
    Sauerbrey GZ (1957) Phys Verhandl 8: 113Google Scholar
  88. [88]
    Sauerbrey GZ (1959) Z Phys 115: 206Google Scholar
  89. [89]
    Scherge M, Li X, Schaefer JA (1999) The effect of water on friction of MEMS. Trib Lett 6: 215–220CrossRefGoogle Scholar
  90. [90]
    Schmitt RF, et al.(2001) Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes. Sens Actuat B 76: 95–102Google Scholar
  91. [91]
    Shinn ND, Mayer TM, Michalske TA (1999) Structure-dependent properties of C9-alkanethiol monolayers. Trib Lett 7(2–3): 67–71Google Scholar
  92. [92]
    Skaife JJ, Abbott NL (1999) Quantitative characterization of obliquely deposited substrates of gold by atomic force microscopy: influence of substrate topography on anchoring of liquid crystals. Chem Mater 11: 612–623CrossRefGoogle Scholar
  93. [93]
    Stockbridge CD (1966) In: Vacuum Microbalance Techniques. Behrndt KH (eds) Vol 5, Plenum Press, New York, p 163Google Scholar
  94. [94]
    Tai Y-C, Muller RS (1989) Sens Actuators 20: 41Google Scholar
  95. [95]
    Telegdi J, et al. (2000) EQCM study of copper and iron corrosion inhibition in the presence of organic inhibitors and biocides. Electrochim Acta 45(22–23): 3639–3647Google Scholar
  96. [96]
    Teuscher JH, et al. (1997) Phase transitions in thin alkane films and alkanethiolate monolayers on gold detected with a thickness shear mode device. Faraday Discuss 107: 399–416CrossRefGoogle Scholar
  97. [97]
    Thompson M, et al.(1991) Thickness-shear mode acoustic wave sensors in the liquid phase, a review. Analyst 116: 881–889CrossRefGoogle Scholar
  98. [98]
    Tomassone MS, Widom A (1997) Electronic friction forces on molecules moving near metals. Phys Rev B 56(8): 4938–4943CrossRefGoogle Scholar
  99. [99]
    Tronin A, Dubrovsky T, Radicchi G, Nicolini C (1996) Optimization of IgG Langmuir film deposition for application as sensing elements. Sens Actuat B 34: 276–282Google Scholar
  100. [100]
    Viitala T, et al. (2000) Protein immobilization to a partially cross-linked organic monolayer. Langmuir 16: 4953–4961CrossRefGoogle Scholar
  101. [101]
    Vikholm I, Albers WM, (1998) Oriented immobilization of antibodies for immunosensing. Langmuir 14: 3865–3872CrossRefGoogle Scholar
  102. [102]
    Vikholm I, Gyorvary E, Peltonen J (1996) Incorporation of lipid-tagged single-chain antibodies into lipid monolayers and the interaction with antigen. Langmuir 12: 3276–3281CrossRefGoogle Scholar
  103. [103]
    Wadsak M, et al. (2000) Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM. Surf Sci 454–456: 246–250Google Scholar
  104. [104]
    Wang DF, Kato K (2001) Tribological evaluation of carbon coatings with and without nitrogen incorporation applicable to MicroElectroMechanical systems. Sensor Actuat A 93(3): 251–257Google Scholar
  105. [105]
    Watts ET, Krim J, Widom A (1990) Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates. Phys Rev B41(6):3466–3472CrossRefGoogle Scholar
  106. [106]
    Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28: 26–37CrossRefGoogle Scholar
  107. [107]
    Weiss P (2000) The little engines that couldn’t. Science News 158(4): 56–58Google Scholar
  108. [108]
    White R (1997) Acoustic interactions from Faraday’s crispations to MEMS. Faraday Discuss 107: 1–13CrossRefGoogle Scholar
  109. [109]
    Widom A, Krim J (1994) Spreading diffusion and its relation to sliding friction in molecularly thin adsorbed films. Phys Rev E 49(5): 4154–4156CrossRefGoogle Scholar
  110. [110]
    Windeln J et al. (2001) Applied surface analysis in magnetic storage technology. Appl Surf Sci 179: 167–180CrossRefGoogle Scholar
  111. [111]
    Witte G, Weiss K, Jakob P, Braun J, Kostov KL, Woll CH (1998) Damping of molecular motion on a solid substrate: evidence for electron-hole pair creation. Phys Rev Lett 80(1): 121–124CrossRefGoogle Scholar
  112. [112]
    Wolff O, Seydel E, Johannsmann D (1997) Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Discuss 107: 91–104CrossRefGoogle Scholar
  113. [113]
    Xiao C, Yang M, Sui S (1998) DNA-containing organized molecular structure based on controlled assembly on supported monolayers. Thin Solid Films 327–329: 647–651Google Scholar
  114. [114]
    Yamada R, Ye S, Uosaki K (1996) Novel scanning probe microscope for local elasticity measurement. Jpn J Appl Phys 35: L846–L848Google Scholar
  115. [115]
    Yang M, Thompson M, Duncan-Hewitt W (1993) Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids. Langmuir 9:802–811Google Scholar
  116. [116]
    Yoshizawa H, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J Phys Chem 97: 11300–11313Google Scholar
  117. [117]
    Zhou T, Marx KA, Warren M, Schulze H, Braunhut S (2000) The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol Prog 16: 268–277CrossRefGoogle Scholar
  118. [118]
    Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87(9): 096105Google Scholar
  119. [119]
    Zhu XY, Houston JE (1999) Molecular lubricants for silicon-based microelectrome-chanical systems (MEMS): a novel strategy. Trib Lett 7: 87–90CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. W. Bender
    • 1
  • J. Krim
    • 1
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleigh

Personalised recommendations