Nanoscale Mechanical Characterization of Carbon Nanotubes

  • R.S. Ruoff
  • M.-F. Yu


Carbon Nanotubes Scanning Tunneling Microscope Multiwalled Carbon Nanotubes Scanning Tunneling Microscope Image Atomic Force Microscope Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature (London) 354: 56–58CrossRefGoogle Scholar
  2. 2.
    Iijima S and Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature (London) 363: 603–605CrossRefGoogle Scholar
  3. 3.
    Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J and Beyers R (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature (London) 363: 605–607CrossRefGoogle Scholar
  4. 4.
    Schadler LS, Giannaris SC and Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73: 3842–3844CrossRefGoogle Scholar
  5. 5.
    Wagner HD, Lourie O, Feldman Y and Tenne R (1998) Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72: 188–190CrossRefGoogle Scholar
  6. 6.
    Tans SJ, Verschueren ARM and Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature (London) 393: 49–52Google Scholar
  7. 7.
    Derycke V, Martel R, Appenzeller J and Avouris P (2001) Carbon Nanotube Inter-and Intramolecular Logic Gates. Nano Lett. 1: 453–456CrossRefGoogle Scholar
  8. 8.
    Bachtold A, Hadley P, Nakanishi T and Dekker C (2001) Logic Circuits with Carbon Nanotube Transistors. Science (Washington, D. C.) 294: 1317–1321CrossRefGoogle Scholar
  9. 9.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fisher JE and Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science (Washington, D. C.) 273:483–487Google Scholar
  10. 10.
    Tans SJ, Devoret MH, Dal H, Thess A, Smalley RE, Geerligs LJ and Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature (London) 386: 474–477CrossRefGoogle Scholar
  11. 11.
    de Heer WA, Chatelain A and Ugarte D (1995) A carbon nanotube field-emission electron source. Science (Washington, D. C.) 270: 1179–1180Google Scholar
  12. 12.
    Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW and Chang RPH (1998) A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72: 2912–2913Google Scholar
  13. 13.
    Choi WB, Lee YH, Lee NS, Kang JH, Park SH, Kim HY, Chung DS, Lee SM, Chung SY and Kim JM (2000) Carbon-nanotubes for full-color field-emission displays. Jpn. J. Appl. Phys., Part 1 39: 2560–2564Google Scholar
  14. 14.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K and Dailt H (2000) Nanotube molecular wires as chemical sensors. Science (Washington, D. C.) 287:622–625CrossRefGoogle Scholar
  15. 15.
    Chen P, Wu X, Lin J and Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science (Washington, D. C.) 285: 91–93CrossRefGoogle Scholar
  16. 16.
    Dai H, Hafner JH, Rinzler AG, Colbert DT and Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature (London) 384: 147–150CrossRefGoogle Scholar
  17. 17.
    Wong SS, Harper JD, Lansbury PT, Jr. and Lieber CM (1998) Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems. J. Am. Chem. Soc. 120: 603–604Google Scholar
  18. 18.
    Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y and Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307: 153–157CrossRefGoogle Scholar
  19. 19.
    Overney G, Zhong W and Tomanek D (1993) Structure Rigidity and Low-Frequency Vibrational-Modes of Long Carbon Tubules. Zeitschrift Fur Physik D-Atoms Molecules and Clusters 27(1): 93–96Google Scholar
  20. 20.
    Ruoff RS and Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33: 925–930CrossRefGoogle Scholar
  21. 21.
    Yakobson BI (1997) Dynamic topology and yield strength of carbon nanotubes. In: Ruoff, RS and Kadish, KM (eds.) Proceedings of the Symposium on Fullerenes, Electrochem. Soc. ECS, Pennington, pp 549–560.Google Scholar
  22. 22.
    Lu JP (1997) Elastic Properties of Carbon Nanotubes and Nanoropes. Phys. Rev. Lett. 79: 1297–1300Google Scholar
  23. 23.
    Treacy MMJ, Ebbesen TW and Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature (London) 381: 678–680CrossRefGoogle Scholar
  24. 24.
    Wong EW, Sheehan PE and Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Phys. Rev. B: Condens. Matter 56: 6420–6423Google Scholar
  25. 25.
    Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN and Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys. Rev. B: Condens. Matter 58: 14031–14035Google Scholar
  26. 26.
    Salvetat J-P, Kulik AJ, Bonard J-M, Briggs GAD, Stoeckli T, Metenier K, Bonnamy S, Beguin F, Burnham NA and Forro L (1999) Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. (Weinheim, Ger.) 11: 161–165CrossRefGoogle Scholar
  27. 27.
    Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stockli T, Burnham NA and Forro L (1999) Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys. Rev. Lett. 82: 944–947CrossRefGoogle Scholar
  28. 28.
    Walters DA, Ericson LM, Casavant MJ, Liu J, Colbert DT, Smith KA and Smalley RE (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74: 3803–3805CrossRefGoogle Scholar
  29. 29.
    Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF and Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science (Washington, D. C.) 287: 637–640CrossRefGoogle Scholar
  30. 30.
    Yu M-F, Files BS, Arepalli S and Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84: 5552–5555Google Scholar
  31. 31.
    Yu M-F, Yakobson BI and Ruoff RS (2000) Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. J. Phys. Chem. B8764–8767Google Scholar
  32. 32.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL and Goldberg HA (1988) Graphite Fibers and Filaments. Springer-Verlag, New York.Google Scholar
  33. 33.
    Odom TW, Huang J-L, Kim P and Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature (London) 391: 62–64Google Scholar
  34. 34.
    Ajayan PM and Ebbesen TW (1997) Nanometer-size tubes of carbon. Appl. Phys. Lett. 71: 2620–2622Google Scholar
  35. 35.
    Binnig G and Quate CF (1986) Atomic force microscope. Phys. Rev. Lett. 56: 930–933CrossRefGoogle Scholar
  36. 36.
    Wiesendanger R (1994) Scanning probe microscope: methods and applications. Cambridge University Press, Oxford.Google Scholar
  37. 37.
    See: Scholar
  38. 38.
    Wildoer JWG, Venema LC, Rinzier AG, Smalley RE and Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature (London) 391: 59–62Google Scholar
  39. 39.
    Williams DB and Carter CB (1996) Transmission electron microscopy. Plenum Press, New York.Google Scholar
  40. 40.
    Yu M-F, Dyer MJ, Skidmore GD, Rhors HW, Lu XK, Ausman KD, Ehr JRV and Ruoff RS (1999) 3-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10: 244CrossRefGoogle Scholar
  41. 41.
    Nishijima H, Kamo S, Akita S, Nakayama Y, Hohmura KI, Yoshimura SH and Takeyasu K (1999) Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid. Appl. Phys. Lett. 74: 4061–4063CrossRefGoogle Scholar
  42. 42.
    Poncharal P, Wang L, Ugarte D and de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science (Washington, D. C.) 283:1513–1516CrossRefGoogle Scholar
  43. 43.
    Kizuka T (1998) Atomic Process of Point Contact in Gold Studied by Time-Resolved High-Resolution Transmission Electron Microscopy. Phys. Rev. Lett. 81: 4448–4451CrossRefGoogle Scholar
  44. 44.
    Kizuka T, Yamada K, Deguchi S, Naruse M and Tanaka N (1997) Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys. Rev. B: Condens. Matter 55: R7398–7401Google Scholar
  45. 45.
    Kizuka T (1999) Direct atomistic observation of deformation in multiwalled carbon nanotubes. Phys. Rev. B: Condens. Matter 59: 4646–4649Google Scholar
  46. 46.
    Cumings J, Collins PG and Zettl A (2000) Peeling and sharpening multiwall nanotubes. Nature (London) 406: 586Google Scholar
  47. 47.
    Cumings J and Zettl A (2000) Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science (Washington, D. C.) 289: 602–604CrossRefGoogle Scholar
  48. 48.
    Ruoff RS, Lorents DC, Laduca R, Awadalla S, Weathersby S, Parvin K and Subramoney S (1995) Nanotubes: bending and filling: Part I. In: Ruoff, RS and Kadish, KM (eds.) Proc.-Electrochem. Soc. ECS 557–562.Google Scholar
  49. 49.
    Lourie O, Rohrs H, Huang H, Ausman K, Piner R, Yu M-F, Dyer M, Gibbons P and Ruoff R (2001) Mechanics of single walled carbon nanotubes. unpublished resultGoogle Scholar
  50. 50.
    Lourie O, Rohrs H, Huang H, Ausman K, Piner R, Yu M-F, Dyer M, Gibbons P and Ruoff R (2001) TEM/SEM nanostressing stage. unpublished resultGoogle Scholar
  51. 51.
    See: Scholar
  52. 52.
    Falvo MR, Clary GJ, Taylor RM, II, Chi V, Brooks FP, Jr., Washburn S and Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature (London) 389: 581–584Google Scholar
  53. 53.
    Falvo MR, Taylor RM, II, Helser A, Chi V, Brooks FP, Jr., Washburn S and Superfine R (1999) Nanometer-scale rolling and sliding of carbon nanotubes. Nature (London) 397: 236–238Google Scholar
  54. 54.
    Paulson S, Helser A, Nardelli MB, Taylor RM, Falvo M, Superfine R and Washburn S (2000) Tunable resistance of a carbon nanotube-graphite interface. Science (Washington, D. C.) 290: 1742–1744CrossRefGoogle Scholar
  55. 55.
    Hertel T, Martel R and Avouris P (1998) Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces. J. Phys. Chem. B 102: 910–915CrossRefGoogle Scholar
  56. 56.
    Hertel T, Walkup RE and Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B: Condens. Matter 58: 13870–13873Google Scholar
  57. 57.
    Shen W, Jiang B, Han BS and Xie S-S (2000) Investigation of the Radial Compression of Carbon Nanotubes with a Scanning Probe Microscope. Phys. Rev. Lett. 84:3634–3637Google Scholar
  58. 58.
    Yu M-F, Kowalewski T and Ruoff RS (2000) Investigation of the Radial Deformability of Individual Carbon Nanotubes under Controlled Indentation Force. Phys. Rev. Lett. 85: 1456–1459Google Scholar
  59. 59.
    Yu M-F. 2001. Multiprobe Nanomanipulation and Functional Assembly of Nanomaterials Inside a Scanning Electron Microscope., IEEE NANO2001.: Maui, HIGoogle Scholar
  60. 60.
    Yu M-F, Wagner GJ, Ruoff RS and Dyer MJ (2002) Realization of parametric resonance in a nanowire mechanical system with nanomanipulation in a scanning electron microscope. Phys. Rev. B: acceptedGoogle Scholar
  61. 61.
    Dikin DA, Chen X, Ding W, Wagner G and Ruoff RS (Submitted, 2002) Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation.Google Scholar
  62. 62.
    Ruoff RS, Tersoff J, Lorents DC, Subramoney S and Chan B (1993) Radial deformation of carbon nanotubes by van der Waals forces. Nature (London) 48: 195–198Google Scholar
  63. 63.
    Tersoff J and Ruoff RS (1994) Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73: 676–679CrossRefGoogle Scholar
  64. 64.
    Chopra NG, Benedict LX, Crespi VH, Cohen ML, Louie SG and Zettl A (1995) Fully collapsed carbon nanotubes. Nature (London) 377: 135–138CrossRefGoogle Scholar
  65. 65.
    Yu M-F, Dyer MJ and Ruoff RS (2001) Structure and mechanical flexibility of carbon nanotube ribbons: An atomic-force microscopy study. Journal of Applied Physics 89: 4554–4557Google Scholar
  66. 66.
    Yu MF, Kowalewski T and Ruoff RS (2001) Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy. Phys. Rev. Lett. 86: 87–90Google Scholar
  67. 67.
    Benedict LX, Chopra NG, Cohen ML, Zettl A, Louie SG and Crespi VH (1998) Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286: 490–496CrossRefGoogle Scholar
  68. 68.
    Yu M-F, Dyer MJ, Chen J, Qian D, Liu WK and Ruoff RS (2001) Locked twist in multiwalled carbon-nanotube ribbons. Phys. Rev. B: Condens. Matter 64: 241403RGoogle Scholar
  69. 69.
    Kolmogorov AN and Crespi VH (2000) Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 85: 4727–4730CrossRefGoogle Scholar
  70. 70.
    Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL and Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science (Washington, D. C.) 289: 94–97CrossRefGoogle Scholar
  71. 71.
    Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Jayanthi CS, Tang M and Wu SY (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature (London) 405: 769–772Google Scholar
  72. 72.
    Zheng Q and Jiang Q (2002) Multiwalled carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 88: 045503Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R.S. Ruoff
    • 1
  • M.-F. Yu
    • 2
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanston
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations