Metarealistic Rendering of Real-time Interactive Computer Animations

  • George K. Francis


Binocular Vision Computer Animation Motion Parallax Fourth Dimension Immersive Virtual Environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Proceedings of the First International Symposium on Non-Photorealistic Animation and Rendering. ACM-SIGGRAPH, Eurographics, Annecy, France, June 5–7, 2000.Google Scholar
  2. [2]
    Hans-Dieter Abring. Von Daguerre Bis Heute, Band I. Buchverlag und Foto-Museum, 1990.Google Scholar
  3. [3]
    Thomas Banchoff. The spherical two piece property and tight surfaces in spheres. Journal of Differential Geometry, 4(3):193–205, 1970.MATHMathSciNetGoogle Scholar
  4. [4]
    Thomas Banchoff. Beyond the Third Dimension. W. H. Freeman&Co., Scientific American Library, New York, 1990.Google Scholar
  5. [5]
    Thomas Banchoff and Charles Strauss. Complex Function Graphs, Dupin Cyclides, Gauss Maps and the Veronese Surface. Computer Geometry Films: Brown University, Providence, RI, 1977.Google Scholar
  6. [6]
    Tom Banchoff and Davide Cervone. Math awareness month 2000: An interactive experience. In this volume p. 83–97.Google Scholar
  7. [7]
    David Banks. Interactive display and manipulation of two dimensional surfaces in four-dimensional space. In Symposium on Interactive 3D Graphics, pages 197–207. ACM, 1992.Google Scholar
  8. [8]
    Garrett Birkhoff and Saunders MacLane. A Survey of Modern Algebra. MacMillan, 1953.Google Scholar
  9. [9]
    Jim Blinn. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Morgan Kaufmann, 1996.Google Scholar
  10. [10]
    Donna Cox, George Francis, and Ray Idaszak. The Etruscan Venus. In Tom DeFanti and Maxine Brown, editors, Video Review Number 49. ACM-SIGGRAPH, 1989.Google Scholar
  11. [11]
    H.M.S. Coxeter, Michele Emmer, Roger Penrose, and M. Teuber, editors. M.C. Escher: Mathematics and Art. North Holland, Amsterdam, 1986, 5th edition.Google Scholar
  12. [12]
    Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, R. V. Kenyon, and John C. Hart. The CAVE: Audio-visual experience automatic virtual environment. Communications ACM, 35(6):65–72, 1992.Google Scholar
  13. [13]
    Michael Daniels and Michael Pelsmajer. Illusion. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 2000. An illiView real-time interactive CAVE animation.Google Scholar
  14. [14]
    Michele Emmer and M. Manaresi, editors. Mathematics, Art, Technology and Cinema. Springer Verlag, New York, 2003.Google Scholar
  15. [15]
    John Estabrook, Ulises Cervantes-Pimentel, Birgit Bluemer, and George Francis. Partnerball: a mathematical experiment in simulating gravitational lenses in tele-immersive virtual reality. Supercomputing98, 1998.Google Scholar
  16. [16]
    Mark Flider. Schprel. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 2001. An illiView real-time interactive CAVE animation.Google Scholar
  17. [17]
    Alex Francis, Umesh Thakkar, Kevin Vlack, and George Francis. CAVE Gladiator: Experiments on the relative value of head-tracking and stereopsis in CAVE immersive virtual environments. CAVERNUS: The CAVE Research Network Users Society, 1998.Google Scholar
  18. [18]
    George Francis, Chris Hartman, Glenn Chappell, Ulrike Axen, Paul McCreary, Joanna Mason, and Alma Arias. Post-Euclian Walkabout. In VROOM — the Virtual Reality Room. ACM-SIGGRAPH, Orlando, 1994.Google Scholar
  19. [19]
    George Francis, John M. Sullivan, Ken Brakke, Dennis Roseman, Rob Kusner, Alex Bourd, Chris Hartman, Ulrike Axen, Jason Rubenstein, Paul McCreary, Will Scullin, and Glenn Chappell. LATERNA matheMAGICA. In Holly Korab and Maxine D. Brown, editors, Virtual Environments and Distributed Computing at SC’95: GII Testbed and HPC Challenge Applications on the I-WAY. ACM/IEEE Supercomputing’95, San Diego 1995.Google Scholar
  20. [20]
    George K. Francis. A Topological Picturebook. Springer, 1987.Google Scholar
  21. [21]
    George K. Francis and Louis H. Kauffman. Air on the Dirac Strings. In William Abikoff, Joan Birman, and Katherine Kuiken, editors, The Mathematical Legacy of Wilhelm Magnus, volume 169, pages 261–276. Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  22. [22]
    George K. Francis, John M. Sullivan, Stuart S. Levy, Camille Goudeseune, and Chris Hartman. The Optiverse. In SIGGRAPH Video Review, volume 125 of Electronic Theater. ACM-SIGGRAPH, 1998. 3 min narrated and scored videotape.Google Scholar
  23. [23]
    Stuart Green, David Salesin, Simon Schofield, Aaron Hertzmann, Peter Litwinowicz, Amy Gooch, Cassidy Curtis, and Bruce Gooch. Non-Photorealistic Rendering, Course Notes. ACM-SIGGRAPH, New Orleans, 1999.Google Scholar
  24. [24]
    Charlie Gunn and Delle Maxwell. Not Knot. A K Peters, Wellesley, MA, 1991. video (17 min) produced by the Geometry Center, U. Minnesota.Google Scholar
  25. [25]
    Andrew Hanson, Tamara Munzner, and George Francis. Interactive methods for visualizable geometry. IEEE Computer, 27(4):73–83, July 1994.Google Scholar
  26. [26]
    John C. Hart, George K. Francis, and Louis H. Kauffman. Visualizing quaternion rotation. ACM Transactions on Graphics, 13(3):256–276, 1994.CrossRefGoogle Scholar
  27. [27]
    Linda Henderson. Four-dimensional space or space-time: the emergence of the cubism-relativity myth in new york in the 1940s. M. Emmer, ed., Visual Mind 2. MIT Press, Cambridge, MA, 2005.Google Scholar
  28. [28]
    Linda Dalrymple Henderson. The Fourth Dimension and Non-Euclidean Geometry in Modern Art. Princeton University Press, Princeton, new edition MIT Press, Cambridge, 2001 edition, 1983.Google Scholar
  29. [29]
    Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. SIGGRAPH2000 Conference Proceedings, pages 517–526, 2000.Google Scholar
  30. [30]
    David Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea, 1952.Google Scholar
  31. [31]
    Mark J. Kilgard. OpenGL programming for the X Window System. Addison-Wesley, 1996.Google Scholar
  32. [32]
    Scott E. Kim. An impossible four-dimensional illusion. In David W. Brisson, editor, Hypergraphics: Visualizing Complex Relationships in Art, Science and Technology, pages 187–239. Westview Press, Boulder, 1978.Google Scholar
  33. [33]
    Lee Markosian, Michael Kowalski, Samuel Trychin, Lubomir Bourdev, Daniel Goldstein, and John F. Hughes. Real-time nonphotorealistic rendering. Proceedings of SIGGRAPH 97, pages 415–420, August 1997.Google Scholar
  34. [34]
    William Morris, editor. The American Heritage Dictionary of the English Language. Houghton Miffin, 1969.Google Scholar
  35. [35]
    Michael Pelsmajer. 4D-Maze. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1999. An illiView real-time interactive CAVE animation.Google Scholar
  36. [36]
    Daniel Sandin, George Francis, Louis Kauffman, Chris Hartman, Glenn Chappell, and John Hart. Air on the Dirac Strings. In Tom DeFanti and Maxine Brown, editors, Electronic Theater. ACM-SIGGRAPH, 1993.Google Scholar
  37. [37]
    Daniel Sandin, Louis Kauffman, George Francis, Joanna Mason, and Milana Huang. Getting Physical in Four Dimensions. In VROOM — the Virtual Reality Room. ACM-SIGGRAPH, Orlando, 1994.Google Scholar
  38. [38]
    John M. Sullivan. The Optiverse and other sphere eversions. In ISAMA 99, pages 491–497. The International Society of The Arts, Mathematics and Architecture, Univ. of the Basque Country, 1999. Proceedings of the June 1999 conferece in San Sebastián.Google Scholar
  39. [39]
    John M. Sullivan, George Francis Stuart S. Levy, Camille Goudeseune, and Chris Hartman. The Optiverse. In Hans-Christian Hege and Konrad Polthier, editors, VideoMath Review Cassette, VideoMath Festival at ICM’98. Springer-Verlag, Berlin, 1998. 6.5 min narrated and scored videotape.Google Scholar
  40. [40]
    H. Seifert und W. Threlfall. Lehrbuch der Topologie. Chelsea, 1947.Google Scholar
  41. [41]
    Webster’s Collegiate Dictionary. Thomas Allen, Ltd., 5th edition edition, 1936.Google Scholar
  42. [42]
    Jeffrey R. Weeks. The Shape of Space. Dekker, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • George K. Francis
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUSA

Personalised recommendations