Advertisement

Inherited Neurological Diseases and Disorders of Myelin

Keywords

White Matter Flair Image Maple Syrup Urine Disease Neuronal Ceroid Lipofuscinosis Maple Syrup Urine Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Modder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418Google Scholar
  2. Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH (1986) MRI of normal brain maturation. AJNR Am J Neuroradiol 7:201–208Google Scholar
  3. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 48:949–958Google Scholar
  4. Mukherjee P, Miller JH, Shimony JS, et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456Google Scholar
  5. Schneider JF, Il'yasov KA, Boltshauser E, Hennig J, Martin E (2003) Diffusion tensor imaging in cases of adrenoleukodystrophy: preliminary experience as a marker for early demyelination? AJNR Am J Neuroradiol 24:819–824Google Scholar

Suggested Reading

  1. Farina L, Bizzi A, Finocchiro G, et al (2000) MR imaging and proton MR spectroscopy in adult Krabbe disease. AJNR Am J Neuroradiol 21:1478–1482Google Scholar
  2. Farley TJ, Ketonen LM, Bodensteiner JB, Wang DD (1992) Serial MRI and CT findings in infantile Krabbe disease. Pediatr Neurol 6:455–458Google Scholar
  3. Given CA 2nd, Santos CC, Durden DD (2001) Intracranial and spinal MR imaging findings associated with Krabbe's disease. ANJR Am J Neuroradiol 22:1782–1785Google Scholar
  4. Zarifi MK, Tzika AA, Astrakas LG, Poussaint TY, Anthony DC, Darras BT (2001) Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe's disease. J Child Neurol 16:522–526Google Scholar

Suggested Reading

  1. Barone R, Nigro F, Triulzi F, Masumeci S, Fiumara A, Pavone L (1999) Clinical and neuroradiological follow-up in mucopolysaccharidosis type III (Sanfilippo syndrome). Neuropediatrics 5:270–274Google Scholar
  2. Barone R, Parano E, Trifiletti RR, Fiumara A, Pavone P (2002) White matter changes mimicking a leukodystrophy in a patient with mucopolysaccharidosis: characterization by MRI. J Neurol Sci 195:171–175Google Scholar
  3. Lee C, Dineen TE, Brack M, Kirsch JE, Runge VM (1993) The mucopolysaccharidoses: characterization by cranial MR imaging. AJNR Am J Neuroradiol 14:1285–1292Google Scholar
  4. Parsons VJ, Hughes DG, Wraith JE (1996) Magnetic resonance imaging of the brain, neck and cervical spine in mild Hunter's syndrome (mucopolysaccharidoses type II). Clin Radiol 51:719–723Google Scholar
  5. Zafeiriou DI, Augoustidou-Savvopoulou P, Papadopoulou FA, et al (1998) MRI findings in mild mucopolysaccharidosis II (Hunter's syndrome). Eur J Paediatr Neurol 2:153–156Google Scholar

Suggested Reading

  1. Barkovich AJ, Peck WW (1997) MR of Zellweger syndrome. AJNR Am J Neuroradiol 18:1163–1170Google Scholar
  2. Pueschel SM, Oyer CE (1995) Cerebrohepatorenal (Zellweger) syndrome: clinical, neuropathological, and biochemical findings. Childs Nerv Syst 11:639–642Google Scholar

Suggested Reading

  1. Barkovich AJ, Ferriero DM, Bass N, Boyer R (1997) Involvement of the pontomedullary corticospinal tracts: a useful finding in the diagnosis of X-linked adrenoleukodystrophy. AJNR Am J Neuroradiol 18:95–100Google Scholar
  2. Chen X, DeLellis RA, Hoda SA (2003) Adrenoleukodystrophy. Arch Pathol Lab Med 127:119–120Google Scholar
  3. Melhem ER, Gotwald TF, Itoh R, Zinreich SJ, Moser HW (2001) T2 relaxation measurements in X-linked adrenoleukodystrophy performed using dual-echo fast fluid-attenuated inversion recovery MR imaging. AJNR Am J Neuroradiol 22:773–776Google Scholar

Suggested Reading

  1. Autti T, Raininko R, Santavuori P, Vanhanen SL, Poutanen VP, Haltia M (1997) MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type. Neuroradiology 5:371–377Google Scholar
  2. D'Incerti L (2000) MRI in neuronal ceroid lipofuscinosis. Neurol Sci 21:71–73Google Scholar
  3. Santavuori P, Vanhanen SL, Autti T (2001) Clinical and neuroradiological diagnostic aspects of neuronal ceroid lipofuscinosis disorders. Eur J Paediatr Neurol [Suppl A]:157–161Google Scholar
  4. Vanhanen SL, Raininko R, Santavuori P (1994) Early differential diagnosis of infantile neuronal ceroid lipofuscinosis, Rett syndrome, and Krabbe disease by CT and MR. AJNR Am J Neuroradiol 15:1443–1453Google Scholar
  5. Vanhanen SL, Raininko R, Autti T, Santavuori P (1995) MRI evaluation of the brain in infantile neuronal ceroid-lipofuscinosis, part 2. MRI findings in 21 patients. J Child Neurol 10:444–450Google Scholar

Suggested Reading

  1. Abe K, Yoshimura H, Tanaka H, Fujita N, Hikita T, Sakoda S (2004) Comparison of conventional and diffusion-weighted MRI and proton MR spectroscopy in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like events. Neuroradiology 46:113–117Google Scholar
  2. Arii J, Tanabe Y (2000) Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol 21:1502–1509Google Scholar
  3. Heckmann JM, Eastman R, Handler L, Wright M, Owen P (1993) Leigh disease (subacute necrotizing encephalomyelopathy): MR documentation of the evolution of an acute attack. AJNR Am J Neuroradiol 14:1157–1159Google Scholar
  4. Phillips CI, Gosden CM (1991) Leber's hereditary optic neuropathy and Kearns-Sayre syndrome: mitochondrial DNA mutations. Surv Ophthalmol 35:463–472Google Scholar
  5. Schoffner JM (1996) Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Lancet 348:1283–1288Google Scholar
  6. Valanne L, Ketonen L, Majander A, Suomalainen A, Pihko H (1998) Neuroradiological findings in children with mitochondrial disorders. AJNR Am J Neuroradiol 19:369–377Google Scholar
  7. Yonemura K, Hasegawa Y, Kimura K, Minematsu K, Yamaguchi T (2001) Diffusion-weighted MR imaging in a case of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke like episodes. AJNR Am J Neuroradiol 22:269–272Google Scholar
  8. Zeviani M, Moraes CT, DiMauro S, et al (1988) Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 38:1339–1346Google Scholar

Suggested Reading

  1. Favit A, Nicoletti F, Scapagnini U, Canonico PL (1992) Ubiquinone protects cultured neurons against spontaneous and excitotoxin-induced degeneration. J Cereb Blood Flow Metab 12:638–645Google Scholar
  2. Gironi M, Lamperti C, Nemmi R, et al (2004) Late-onset cerebellar ataxia with hypogonadism and muscle coenzyme Q10 deficiency. Neurology 62(5):818–820Google Scholar
  3. Lamperti C, Naini A, Hirano M, et al (2003) Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60:1206–1208Google Scholar
  4. Musumeci O, Naini A, Slonim AE, et al (2001) Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56:849–855Google Scholar
  5. Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86:2379–2386Google Scholar

Suggested Reading

  1. Johnson MA, Kuo YM, Westaway SK, Parker SM, Ching KH, Gitschier J, Hayflick SJ (2004) Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann N Y Acad Sci 1012:282–298Google Scholar
  2. Nuri Sener R (2003) Pantothenate kinase-associated neurodegeneration: MR imaging,proton MR spectroscopy, and diffusion MR imaging findings. AJNR Am J Neuroradiol 24:1690–1693Google Scholar
  3. Sethi N, Sethi PK (2003) Eye-of-the-tiger sign. J Assoc Physicians India 51:486Google Scholar
  4. Swaiman KF (2001) Hallervorden-Spatz syndrome. Pediatr Neurol 25:102–108Google Scholar
  5. Trimble M (2003) Magnetic resonance imaging and Hallervorden-Spatz syndrome. CNS Spectr 8:420Google Scholar

Suggested Reading

  1. Garcia-Cazorla A, Sans A, Baquero M, et al (2004) White matter alterations associated with chromosomal disorders. Dev Med Child Neurol 3:148–153Google Scholar
  2. Hengstschlager M, Bettelheim D, Repa C, Lang S, Deutinger J, Bernaschek G (2002) A fetus with trisomy 9p and trisomy 10p originating from unbalanced segregation of a maternal complex chromosome rearrangement t(4;10;9). Fetal Diagn Ther 4:243–246Google Scholar
  3. Koeppen AH, Robitaille Y (2002) Pelizaeus-Merzbacher disease. Neuropathol Exp Neurol 61:747–759Google Scholar
  4. Loevner LA, Shapiro RM, Grossman RI, Overhauser J, Kamholz J. (1996) White matter changes associated with deletions of the long arm of chromosome 18 (18q-syndrome): a dysmyelinating disorder? AJNR Am J Neuroradiol 10:1843–1848Google Scholar
  5. Ono J, Harada K, Hasegawa T, et al (1994) Central nervous system abnormalities in chromosome deletion at 11q23. Clin Genet 6:325–329Google Scholar
  6. Ono J, Harada K, Yamamoto T, Onoe S, Okada S (1994) Delayed myelination in a patient with 18q-syndrome. Pediatr Neurol 1:64–67Google Scholar
  7. Plecko B, Stockler-Ipsiroglu S, Gruber S, et al (2003) Degree of hypomyelination and magnetic resonance spectroscopy findings in patients with Pelizaeus Merzbacher phenotype. Neuropediatrics 34:127–136Google Scholar
  8. Sener RN (2004) Pelizaeus-Merzbacher disease: diffusion MR imaging and proton MR spectroscopy findings. J Neuroradiol 31:138–141Google Scholar

Suggested Reading

  1. Brismar J, Aqeel A, Gascon G, Ozand P (1990) Malignant hyperphenylalaninemia: CT and MR of the brain. AJNR Am J Neuroradiol 11:135–138Google Scholar
  2. Moller HE, Weglage J, Bick U, Wiedermann D, Feldmann R, Ullrich K (2003) Brain imaging and proton magnetic resonance spectroscopy in patients with phenylketonuria. Pediatrics 112:1580–1583Google Scholar
  3. Pearsen KD, Gean-Marton AD, Levy HL, Davis KR (1990) Phenylketonuria: MR imaging of the brain with clinical correlation. Radiology 177:437–440Google Scholar
  4. Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE (2001) Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. AJNR Am J Neuroradiol 22:1583–1586Google Scholar

Suggested Reading

  1. Brismar J, Ozand PT (1994) CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol 15:1459–1473Google Scholar
  2. Gebarski SS, Gabrielsen TO, Knake JE, Latack JT (1983) Cerebral CT findings in methylmalonic acid propionic acidemias. AJNR Am J Neuroradiol 4:955–957Google Scholar
  3. Haas RH, Marsden DL, Capistrano-Estrada S, et al (1995) Acute basal ganglia infarction in propionic acidemia. J Child Neurol 10:18–22Google Scholar

Suggested Reading

  1. Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P (1990) Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. ANJR Am J Neuroradiol 11:1219–1228Google Scholar
  2. Cavalleri F, Berardi A, Burlina AB, Ferrari F, Mavilla L (2002) Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology 44:499–502Google Scholar
  3. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45:393–399Google Scholar
  4. Parmar H, Sitoh YY, Ho L (2004) Maple syrup urine disease: diffusion-weighted and diffusion-tensor magnetic resonance imaging findings. J Comput Assist Tomogr 28:93–97Google Scholar

Suggested Reading

  1. Belman AL, Moshe SL, Zimmerman RD (1986) Computed tomographic demonstration of cerebral edema in a child with galactosemia. Pediatrics 78:606–609Google Scholar
  2. Marano GD, Sheils WS Jr, Gabriele OF, Klingberg WG (1987) Cranial CT in galactosemia. AJNR Am J Neuroradiol 8:1150–1151Google Scholar
  3. Nelson MD Jr, Wolff JA, Cross CA, Donnell GN, Kaufman FR (1992) Galactosemia: evaluation with MR imaging. Radiology 184:255–261Google Scholar

Suggested Reading

  1. Bajaj SK, Kurlemann G, Schuierer G, Peters PE (1996) CT and MRI in a girl with late-onset ornithine transcarbamylase deficiency: case report Neuroradiology 8:796–799Google Scholar
  2. Takanashi J, Kurihara A, Tomita M, Kanazawa M, Yamamoto S, Morita F, Ikehira H, Tanada S, Kohno Y (2002) Distinctly abnormal brain metabolism in late-onset ornithine transcarbamylase deficiency. Neurology 2:210–214Google Scholar
  3. Takanashi J, Barkovich AJ, Cheng SF, Weisiger K, Zlatunich CO, Mudge C, Rosenthal P, Tuchman M, Packman S (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 6:1184–1187Google Scholar
  4. Takanashi J, Barkovich AJ, Cheng SF, Kostiner D, Baker JC, Packman S (2003) Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 3:390–393Google Scholar

Suggested Reading

  1. Banwell BL (2004) Pediatric multiple sclerosis. Curr Neurol Neurosci Rep 4:245–252Google Scholar
  2. Bitsch A, Bruhn H, Vougioukas V, et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627Google Scholar
  3. Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso M, Caltagirone C (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging AJNR Am J Neuroradiol 21:862–868Google Scholar
  4. Kurul S, Cakmakci H, Dirik E, Kovanlikaya A (2003) Schilder's disease: case study with serial neuroimaging. J Child Neurol 1:58–61Google Scholar
  5. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345Google Scholar

Suggested Reading

  1. Bernarding J, Braun J, Koennecke HC (2002) Diffusion-and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging 15:96–100Google Scholar
  2. Bizzi A, Ulug AM, Crawford TO, et al (2001) Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 22:1125–1130Google Scholar
  3. Inglese M, Salvi F, Iannucci G, Mancardi GL, Mascalchi M, Filippi M (2002) Magnetization transfer and diffusion tensor MR imaging of acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 23:267–272Google Scholar
  4. Kesselring J, Miller DH, Robb SA, et al (1990) Acute disseminated encephalomyelitis. MRI findings and the distinction from multiple sclerosis. Brain 113:291–302Google Scholar
  5. Kuker W, Ruff J, Gaertner S, Mehnert F, Mader I, Nagele T (2004) Modern MRI tools for the characterization of acute demyelinating lesions: value of chemical shift and diffusion-weighted imaging. Neuroradiology 46:421–426Google Scholar

Suggested Reading

  1. Barkovich JA, Hevner R, Guerrini R (1999) Syndromes of bilateral symmetrical polymicrogyria. AJNR Am J Neuroradiol 20:1814–1821Google Scholar
  2. Paetau R, Saraneva J, Salonen O, Valanne L, Ignatius J, Salenius S (2004) Electromagnetic function of polymicrogyric cortex in congenital bilateral perisylvian syndrome. Neurol Neurosurg Psychiatry 5:717–722Google Scholar

Suggested Reading

  1. Caro PA, Scavina M, Hoffman E, Pegoraro E, Marks HG (1999) MR findings in children with merosin-deficient congenital muscular dystrophy. AJNR Am J Neuroradiol 20:324–326Google Scholar
  2. Echenne B, Rivier F, Jellali AJ, Azais M, Mornet D, Pons F (1997) Merosin positive congenital muscular dystrophy with mental deficiency, epilepsy and MRI changes in the cerebral white matter. Neuromuscul Disord 7:187–190Google Scholar
  3. Miyagoe-Suzuki Y, Nakagawa M, Takeda S (2000) Merosin and congenital muscular dystrophy. Microsc Res Tech 48:181–191Google Scholar
  4. Tan E, Topaloglu H, Sewry C, et al (1997) Late onset muscular dystrophy with cerebral white matter changes due to partial merosin deficiency. Neuromuscul Disord 7:85–89Google Scholar

Suggested Reading

  1. Gallo A, Rocca MA, Falini A, et al (2004) Multiparametric MRI in a patient with adult-onset leukoencephalopathy with vanishing white matter. Neurology 27:323–326Google Scholar
  2. Leegwater PA, Konst AA, Kuyt B, et al (1999) The gene for leukoencephalopathy with vanishing white matter is located on chromosome 3q27. Am J Hum Genet 3:728–734Google Scholar
  3. Leegwater PA, Pronk JC, van der Knaap MS (2003) Leukoencephalopathy with vanishing white matter: from magnetic resonance imaging pattern to five genes. J Child Neurol 18:639–645Google Scholar
  4. Van der Knapp, Kamphorst W, Barth PG, Kraaijeveld CL, Gut E, Valk J (1998) Phenotypic variation in leukoencephalopathy with white matter. Neurology 51:540–547Google Scholar

Suggested Reading

  1. Gomes AL, Vieira JP, Saldanha J (2001) Non-progressive leukoencephalopathy with bilateral temporal cysts. Eur J Paediatr Neurol 3:121–125Google Scholar
  2. Van der Knaap MS, Barth PG, Stroink H, van Nieuwenhuizen O, Arts WF, Hoogenraad F, Valk J (1995) Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol 3:324–334Google Scholar
  3. Van der Knaap MS, Valk J, Barth PG, Smit LM, van Engelen BG, Tortori Donati P (1995) Leukoencephalopathy with swelling in children and adolescents: MRI patterns and differential diagnosis. Neuroradiology 8:679–686Google Scholar
  4. Van der Knaap MS, Barth PG, Vrensen GF, Valk J (1996) Histopathology of an infantile-onset spongiform leukoencephalopathy with a discrepantly mild clinical course. Acta Neuropathol (Berl) 2:206–212Google Scholar

Suggested Reading

  1. Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109Google Scholar
  2. Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR Am J Neuroradiol 9:487–491Google Scholar
  3. Childs AM, Ramenghi LA, Evans DJ, et al (1998) MR features of developing periventricular white matter in preterm infants: evidence of glial cell migration. AJNR Am J Neuroradiol 19:971–976Google Scholar
  4. Holland BA, Haas DK, Norman D, Brant-Zawadzki M, Newton TH (1986) MRI of normal brain maturation. AJNR Am J Neuroradiol 7:201–208Google Scholar
  5. McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol 179:1515–1522Google Scholar
  6. Mukherjee P, Miller JH, Shimony JS, et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358Google Scholar
  7. Sie LT, van der Knaap MS, van Wezel-Meijler G, Valk J (1997) MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 28:97–105Google Scholar

Suggested Reading

  1. Baumert T, Kleber G, Schwarz J, Stabler A, Lamerz R, Mann K (1993) Reversible hyperkinesia in a patient with autoimmune polyglandular syndrome type I. Clin Invest 71: 924–927Google Scholar
  2. Cinaz P, Bideci A, Hazendaroglu A, Ezgu FS, Agaoglu O, Kursaklioglu S (1997) Autoimmune polyglandular syndrome type I. A case report. Turk J Pediatr 39:271–275Google Scholar

Suggested Reading

  1. Brown WD, Caruso JM (1999) Extrapontine myelinolysis with involvement of the hippocampus in three children with severe hypernatremia. J Child Neurol 14:428–433Google Scholar
  2. Cramer SC, Stegbauer KC, Schneider A, Mukai J, Maravilla KR (2001) Decreased diffusion in central pontine myelinolysis. AJNR Am J Neuroradiol 22:1476–1479Google Scholar
  3. Sztencel J, Baleriaux D, Borenstein S, Brunko E, Zegers de Beyl D (1983) Central pontine myelinolysis: correlation between CT and electrophysiologic data. AJNR Am J Neuroradiol 4:529–530Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations