Advertisement

Non-linear 2D and 3D Registration Using Block-Matching and B-Splines

  • Heike Hufnagel
  • Xavier Pennec
  • Grégoire Malandain
  • Heinz Handels
  • Nicholas Ayache
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Abstract

We developed a non-linear registration technique to align images that feature anatomical variabilities. The algorithm is based on a block-matching technique that identifies a sparse displacement vector field from the iconic features of two images. Subsequently, the displacement vectors are used as sampling points to estimate a parametric non-linear transformation that is represented by a tensor product of B-Splines. The B-Spline transformation estimation approximates the correspondences while minimizing the second order derivatives in the transformation function. The block-matching and the transformation estimation are then iterated in a multiscale framework to improve robustness and accuracy. Experiments on 2D histological slices and 3D MR images show qualitatively good results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Trans Med Imaging 1999;18(8):712–721.CrossRefGoogle Scholar
  2. 2.
    Kybic J, Unser M. Fast Parametric Elastic Image Registration. IEEE Trans Med Imaging 2003;12(11):1427–1442.Google Scholar
  3. 3.
    Rohde GK, Aldroubi A, Dawant BM. Adaptive free-form deformation for interpatient medical image registration. SPIE Medical Imaging 2001;4322:1578–1587.Google Scholar
  4. 4.
    Ourselin S, Roche A, Prima S, Ayache N. Block Matching: A General framework to improve robustness of rigid registration of medical images. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI '00. vol. 1935 of Lecture Notes in Computer Science; 2000. p. 557–566.Google Scholar
  5. 5.
    Ourselin S. Recalage d'images médicales par appariement de régions. Application à la constuction d'atlas histologiques 3D. Ph.D. thesis. Université de Nice-Sophia Antipolis; 2002.Google Scholar
  6. 6.
    Ourselin S, Roche A, Subsol G, et al. Reconstructing a 3D Structure from Serial Histological Sections. Image and Vision Computing 2001;19(1–2):25–31.CrossRefGoogle Scholar
  7. 7.
    Hufnagel H. Non-linear 2D and 3D Registration Using Block-Matching and B-Splines. Master's thesis. INRIA Sophia Antipolis, France-University of Luebeck, Germany; 2004.Google Scholar
  8. 8.
    Declerck J. Étude de la dynamique cardiaque par analyse d'images tridimensionnelles. Ph.D. thesis. Université de Nice-Sophia Antipolis; 1997.Google Scholar
  9. 9.
    Stefanescu R, Pennec X, Ayache N. Grid Powered Nonlinear Image Registration with Locally Adaptive Regularization. In: Medical Image Analysis. vol. 8; 2004. p. 325–342. MICCAI 2003 Special Issue.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Heike Hufnagel
    • 1
  • Xavier Pennec
    • 1
  • Grégoire Malandain
    • 1
  • Heinz Handels
    • 2
  • Nicholas Ayache
    • 1
  1. 1.Epidaure ProjectINRIA Sophia AntipolisSophia AntipolisFrance
  2. 2.Institut für Medizinische InformatikUniversitätsklinikum Hamburg-EppendorfHamburg

Personalised recommendations