Advertisement

Dynamic Contrast-Enhanced MRI in Cerebral Tumours

  • Xiao Ping Zhu
  • Kah Loh Li
  • Alan Jackson
Part of the Medical Radiology book series (MEDRAD)

Keywords

Cerebral Blood Volume Magn Reson Image Arterial Input Function Acoustic Neuroma Dynamic Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi JB, Alavi A et al (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078PubMedGoogle Scholar
  2. Amoroso A, Del Porto F et al (1997) Vascular endothelial growth factor: a key mediator of neoangiogenesis. A review. Eur Rev Med Pharmacol Sci 1:17–25PubMedGoogle Scholar
  3. Andersen C, Jensen FT (1998) Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien) 140:919–924CrossRefGoogle Scholar
  4. Aronen HJ, Gazit IE et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51PubMedGoogle Scholar
  5. Aronen HJ, Glass J et al (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 36:520–528PubMedGoogle Scholar
  6. Aronen HJ, Pardo FS et al (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6:2189–2200PubMedGoogle Scholar
  7. Assimakopoulou M, Sotiropoulou-Bonikou G et al (1997) Microvessel density in brain tumors. Anticancer Res 17:4747–4753PubMedGoogle Scholar
  8. Barbier EL, den Boer JA et al (1999) A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images. J Magn Reson Imaging 10:242–253CrossRefPubMedGoogle Scholar
  9. Bharara S, Goldman CK et al (1996) Vascular endothelial growth factor expression correlates with cerebral edema in meningiomas (meeting abstract). Proc Annu Meet Am Assoc Cancer Res 37:A399Google Scholar
  10. Bhujwalla ZM, Artemov D et al (1999) Comparison of vascular volume and permeability for tumors derived from metastatic human breast cancer cells with and without the metastasis suppressor gene nm23. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance, Philadelphia, p 146Google Scholar
  11. Bitzer M, Opitz H et al (1998) Angiogenesis and brain oedema in intracranial meningiomas: influence of vascular endothelial growth factor. Acta Neurochir (Wien) 140:333–340CrossRefGoogle Scholar
  12. Boxerman JL, Hamberg LM et al (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566PubMedGoogle Scholar
  13. Brasch R, Pham C et al (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74PubMedGoogle Scholar
  14. Brem S, Cotran R et al (1972) Tumour angiogenesis a quantitative method for histological grading. J Natl Cancer Inst 28:347–356Google Scholar
  15. Brix G, Semmler W et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedGoogle Scholar
  16. Bruening R, Kwong KK et al (1996) Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. AJNR Am J Neuroradiol 17:831–840PubMedGoogle Scholar
  17. Bullock PR, Mansfield P et al (1991) Dynamic imaging of contrast enhancement in brain tumors. Magn Reson Med 19:293–298PubMedGoogle Scholar
  18. Calamante F, Gadian DG et al (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMedGoogle Scholar
  19. Case TA, Durney CH et al (1987) A mathematical model of diamagnetic line broadening in lung tissue and similar heterogeneous systems. J Magn Reson 73:304–314Google Scholar
  20. Cha S (2002) Relative recirculation: what does it mean? AJNR Am J Neuroradiol 23:1–2PubMedGoogle Scholar
  21. Cha S, Law M et al (2000) Peritumoral region: differentiation between primary high-grade neoplasma and solitary metastasis using dynamic contrast-enhanced T2*-weighted echo-planar perfusion MR imaging. Proceeding of the 38th annual meeting of the American Society of Neuroradiology. American Society of Neuroradiology, Atlanta, p 22Google Scholar
  22. Cha S, Pierce S et al. (2001) Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 22:1109–1116PubMedGoogle Scholar
  23. Cha S, Knopp EA et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology 223:11–29PubMedGoogle Scholar
  24. Cohen MS, Weisskoff RM (1991) Ultra-fast imaging. Magn Reson Imaging 9:1–37CrossRefPubMedGoogle Scholar
  25. Costello PC (1994) Human cerebral microvascular endothelial involvement in neovascularization of malignant glial tumors. Diss Abstr Int [B] 54:5543Google Scholar
  26. Daldrup H, Shames DM et al (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol 171:941–949PubMedGoogle Scholar
  27. Damert A, Ikeda E et al (1997a) Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 327:419–423PubMedGoogle Scholar
  28. Damert A, Machein M et al (1997b) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57:3860–3864PubMedGoogle Scholar
  29. Dean BL, Lee C et al (1992) Cerebral hemodynamics and cerebral blood volume: MR assessment using gadolinium contrast agents and T1-weighted Turbo-FLASH imaging. AJNR Am J Neuroradiol 13:39–48PubMedGoogle Scholar
  30. Dennie J, Mandeville JB et al (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799PubMedGoogle Scholar
  31. Dewhirst MW, Tso CY et al (1989) Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 17:91–99PubMedGoogle Scholar
  32. Dietzmann K, von Bossanyi P et al (1997) Immunohistochemical detection of vascular growth factors in angiomatous and atypical meningiomas, as well as hemangiopericytomas. Pathol Res Pract 193:503–510PubMedGoogle Scholar
  33. Domingo Z, Rowe G et al. (1998) Role of ischaemia in the genesis of oedema surrounding meningiomas assessed using magnetic resonance imaging and spectroscopy. Br.J Neurosurg. 12:414–418CrossRefPubMedGoogle Scholar
  34. Donahue K, Pathak A et al (1999) Utility of acquiring vascular blood volume, permeability and morphology information from dynamic susceptibility contrast agent studies in patients with brain tumors. Proceedings of the 7th scientifi c meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 149Google Scholar
  35. Dvorak HF, Brown LF et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedGoogle Scholar
  36. Fisel CR, Ackerman JL et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17:336–347PubMedGoogle Scholar
  37. Flickinger FW, Allison JD et al (1993) Differentiation of benign from malignant breast masses by time-intensity evaluation of contrast enhanced MRI. Magn Reson.Imaging 11:617–620CrossRefPubMedGoogle Scholar
  38. Frahm J, Haase A et al (1986) Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 10:363–368PubMedGoogle Scholar
  39. Frazzini VI, Cha S et al (1999) Dynamic contrast enhanced T2*-weighted echo-planar perfusion MR imaging of primary CNS lymphoma and glioblastoma multiforme. Proceedings of the 37th annual meeting of the American Society of Neuroradiology. American Society of Neuroradiology, San Diego, p 185Google Scholar
  40. Fujii K, Fujita N et al (1992) Neuromas and meningiomas: evaluation of early enhancement with dynamic MR imaging. AJNR Am J Neuroradiol 13:1215–1220PubMedGoogle Scholar
  41. Fuss M, Wenz F et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58CrossRefPubMedGoogle Scholar
  42. Galbraith SM, Lodge MA et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142CrossRefPubMedGoogle Scholar
  43. Gobbel GT, Seilhan TM et al (1992) Cerebrovascular response after interstitial irradiation. Radiat Res 130:236–240PubMedGoogle Scholar
  44. Goldman CK, Bharara S et al (1997) Brain edema in meningiomas is associated with increased vascular endothelial growth factor expression. Neurosurgery 40:1269–1277PubMedGoogle Scholar
  45. Gossmann A, Helbich TH et al (2000) Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol 183:956–963CrossRefPubMedGoogle Scholar
  46. Gossman A, Bangard C et al (2002a) Quantitative MRI estimates of microvascular permeability in human brain tumors: detection of reginal heterogeneityh and correlation with histological grade. Proc 10th Intern Magn Reson Med HawaiiGoogle Scholar
  47. Gossmann A, Helbich TH et al (2002b) Dynamic contrastenhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240PubMedGoogle Scholar
  48. Gowland P, Mansfield P et al (1992) Dynamic studies of gadolinium uptake in brain tumors using inversion-recovery echo-planar imaging. Magn Reson Med 26:241–258PubMedGoogle Scholar
  49. Griebel J, Mayr NA et al (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 7:111–119PubMedGoogle Scholar
  50. Hacklander T, Hofer M et al (1996a) Cerebral blood volume maps with dynamic contrast-enhanced T1-weighted FLASH imaging: normal values and preliminary clinical results. J Comput Assist Tomogr 20:532–539CrossRefPubMedGoogle Scholar
  51. Hacklander T, Reichenbach JR et al (1996b) Measurement of cerebral blood volume via the relaxing effect of low-dose gadopentetate dimeglumine during bolus transit. AJNR Am J Neuroradiol 17:821–830PubMedGoogle Scholar
  52. Hacklander T, Reichenbach JR et al (1997) Comparison of cerebral blood volume measurements using the T1 and T2* methods in normal human brains and brain tumors. J Comput Assist Tomogr 21:857–866CrossRefPubMedGoogle Scholar
  53. Haroon HA, Buckley DL et al (2002a) A comparison of Ktran measurements in gliomas obtaqined with conventional and first pass model. Proc 10th Intern Magn Reson Med Hawaii, p 663Google Scholar
  54. Haroon HA, Patankar TA et al (2002b) Relationship between vasculoar endothelial permeability and histological grade in human gliomas using a novel first pass model. Proc 10th Intern Magn Reson Med Hawaii, p 2113Google Scholar
  55. Hawighorst H, Engenhart R et al (1997) Intracranial meningeomas: time-and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 15:423–432CrossRefPubMedGoogle Scholar
  56. Hawighorst H, Knapstein PG et al (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curve for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602PubMedGoogle Scholar
  57. Heiland S, Benner T et al (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. Magn Reson Imaging 17:21–27PubMedGoogle Scholar
  58. Henderson E, Sykes J et al (1999) Measurement of blood flow, blood volume and capillary permeablility in a canine spontaneous breast tumor model using tow differen contrast agents. Proceedings of the 8th sientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 148Google Scholar
  59. Hietschold V, Klengel S et al (1993) Simultaneous dynamic measurement of tissue contrast enhancement and perfusion at 0.5 Tesla: method and postprocessing. Proceedings of the 12th scientific meeting of the International Society of Magnetic Resonance in Medicine, New York, p 619Google Scholar
  60. Hobbs SK, Homer RJ et al (2002) Image guided protoemics in human gliomas. Proc 10th Ann Meeting Intern Soc Magn Res Med, Hawaii, p 662Google Scholar
  61. Jackson A, Zhu XP et al (2000) Parametric mapping of scaled fitting error in dynamic susceptibility contrast enhanced MR perfusion imaging, part II. Clinical application. ISMRM, 8th scientific meeting, Denver, p 619Google Scholar
  62. Jackson A, Kassner A et al (2001) Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas. J Magn Reson Imaging 14:510–516CrossRefPubMedGoogle Scholar
  63. Jackson A, Haroon H et al (2002a) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMedGoogle Scholar
  64. Jackson A, Kassner A et al (2002b) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14PubMedGoogle Scholar
  65. Jackson A, Jayson GC et al (2003) Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 76:153–162CrossRefPubMedGoogle Scholar
  66. Jain R, Gerlowski L (1984) Extravascular transport in normal and tumour tissues. Crit Rev Onc Haematol 5:115–170Google Scholar
  67. Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195; discussion 196PubMedGoogle Scholar
  68. Johnson G, Wetzel S et al (2002) Simultaneous measurement of blood volume and vascular transfer contstant by first pass pharmacokinetic modeling. Proc 10th Intern Magn Reson Med Hawaii, p 2123Google Scholar
  69. Kassner A, Annesley D et al (1999) Abnormalities of the contrast re-circulation phase in cerebral tumours demonstrated using dynamic susceptibility contrast-enhanced MR imaging: a possible marker of vascular tortuosity. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 151Google Scholar
  70. Kassner A, Annesley DJ et al (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113CrossRefPubMedGoogle Scholar
  71. Kassner A, Zhu XP et al (2001) A marker of vascular tortuosity (relative recirculation) in gliomas: comparison with blood volume and tumor grade. ISMRM, 9th scientific meeting, Glasgow, p 2247Google Scholar
  72. Klengel S, Hietschold V et al (1994) Simultaneous acquisition of dynamic contrast enhancement and perfusion of normal and pathologic human brain at 0.5 Tesla. Proceedings of the SMR, 2nd annual meeting, San Francisco, p 1467Google Scholar
  73. Knopp EA, Cha S et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798PubMedGoogle Scholar
  74. Knopp MV, Giesel FL et al (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12:301–308CrossRefPubMedGoogle Scholar
  75. Kovar DA, Lewis MZ et al (1997) In vivo imaging of extraction fraction of low molecular weight MR contrast agents and perfusion rate in rodent tumors. Magn Reson Med 38:259–268PubMedGoogle Scholar
  76. Kovar DA, Lewis M et al (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134PubMedGoogle Scholar
  77. Kuhl CK, Bieling H et al (1997) Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology 202:87–95PubMedGoogle Scholar
  78. Kwong KK, Chesler DA et al (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887PubMedGoogle Scholar
  79. Lam WW, Chan KW et al (2001) Pre-operative grading of intracranial glioma. Acta Radiol 42:548–554CrossRefPubMedGoogle Scholar
  80. Larsson HB, Stubgaard M et al (1990) Quantitation of bloodbrain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131PubMedGoogle Scholar
  81. Law M, Cha S et al. (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721PubMedGoogle Scholar
  82. Levin JM, Kaufman MJ et al (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and emodynamic pertubation. Magn Reson Med 34:655–663PubMedGoogle Scholar
  83. Li KL, Jackson A (2003) New hybrid technique for accurate and reproducible quantitation of dynamic contrast-enhanced MRI data. Magn Reson Med 50:1286–1295CrossRefPubMedGoogle Scholar
  84. Li KL, Zhu XP (2002) Quantification of plasma volume and permeability using first pass pharmacokinetic models: an assessment of accuracy and precision by Monte Carlo simulation. Proceedings of the 10th scientific meeting of the International Society for Magnetic Resonance in Medicine, HonoluluGoogle Scholar
  85. Li KL, Zhu XP et al (2003) Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br J Radiol 76:39–50CrossRefPubMedGoogle Scholar
  86. Li KL, Zhu XP et al (2000a) Quantitative dynamic contrast-enhanced MRI in tumors. A reproducible technique in the head? A reproducible technique in the breast? ISMRM, 8th scientific meeting, Denver, p 724Google Scholar
  87. Li KL, Zhu XP et al (2000b) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 12:347–357CrossRefPubMedGoogle Scholar
  88. Li TQ, Ostergaard L et al (1998) Simultaneous blood flow, blood volume and permeability mapping using dual-echo spiral imaging: methodology and initial validation with spiral-FAIR. Proceedings of the 6th scientific meeting of the International Society for Magnetic Resonance in Medicine, Sydney, p 1189Google Scholar
  89. Long DM (1973) Vascular ultrastructure in human meningiomas and schwannomas. J Neurosurg 38:409–419PubMedGoogle Scholar
  90. Ludemann L, Hamm B et al (2000) Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPAenhanced magnetic resonance imaging. Magn Reson Imaging 18:1201–1214CrossRefPubMedGoogle Scholar
  91. Ludemann L, Grieger W et al (2002) Pharmacokinetic imaging of brain tumors. Proc 10th Intern Magn Reson Med Hawaii, p 2079Google Scholar
  92. Lund EL, Spang-Thomsen M et al (1998) Tumor angiogenesis — a new therapeutic target in gliomas. Acta Neurol Scand 97:52–62PubMedGoogle Scholar
  93. Luthert PJ, Deane BR et al (1986) The vasculature of experimental brain tumours: angiogenesis, vascular pathology, and permeability studies. In: Walker MD, Thomas DGT (eds) Biology of brain tumour. Nijhoff, Boston, pp 197–202Google Scholar
  94. Maeda M, Itoh S et al (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189:233–238PubMedGoogle Scholar
  95. Maeda M, Itoh S et al (1994) Vascularity of meningiomas and neuromas: assessment with dynamic susceptibility-contrasst MRF imaging. Am J Roentgenol 163:181–186Google Scholar
  96. Martiny-Baron G, Marme D (1995) VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 6:675–680CrossRefPubMedGoogle Scholar
  97. Maxwell M, Naber SP et al (1991) Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51:1345–1351PubMedGoogle Scholar
  98. Miyati T, Banno T et al (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235PubMedGoogle Scholar
  99. Nagele T, Petersen D et al (1993) Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR Am J Neuroradiol 14:89–98PubMedGoogle Scholar
  100. Ohno K, Pettigrew KD et al (1978) Lower limits of cerebro-vascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–307PubMedGoogle Scholar
  101. Ostergaard L, Weisskoff RM et al (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedGoogle Scholar
  102. Ostergaard L, Smith DF et al (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432CrossRefPubMedGoogle Scholar
  103. Ostergaard L, Hochberg FH et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305PubMedGoogle Scholar
  104. Padhani AR, Hayes C et al (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153CrossRefPubMedGoogle Scholar
  105. Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620CrossRefPubMedGoogle Scholar
  106. Pardo FS, Aronen HJ et al. (1994) Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. Int J Radiat Oncol Biol Phys 30:663–669PubMedGoogle Scholar
  107. Parker GJ, Suckling J et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7:564–574PubMedGoogle Scholar
  108. Paulson OB, Hertz MM (1983) Tracer kinetics and physiologic modelling. In: Lambrecht RM, Rescigno A (eds) Theory to practice. Lecture notes in biomathematics. Springer, Berlin Heidelberg New York, pp 428–444Google Scholar
  109. Perman WH, Gado MH et al (1992) Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 28:74–83PubMedGoogle Scholar
  110. Pietsch T, Valter MM et al (1997) Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol (Berl) 93:109–117CrossRefGoogle Scholar
  111. Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347CrossRefPubMedGoogle Scholar
  112. Provenzale JM, Wang GR et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716PubMedGoogle Scholar
  113. Provias J, Claffey K et al (1997) Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 40:1016–1026CrossRefPubMedGoogle Scholar
  114. Reinhold HS, Endrich B (1986) Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2:111–137PubMedGoogle Scholar
  115. Roberts HC, Roberts TP et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899PubMedGoogle Scholar
  116. Roberts HC, Roberts TP et al (2001) Correlation of microvascular permeability derived from dynamic contrastenhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391CrossRefPubMedGoogle Scholar
  117. Rosen BR, Belliveau JW et al (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 5:263–281PubMedGoogle Scholar
  118. Rosen BR, Belliveau JW et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedGoogle Scholar
  119. Rosen BR, Belliveau JW et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:293–299PubMedGoogle Scholar
  120. Rosen BR, Aronen HJ et al (1993) Advances in clinical neuroimaging: functional MR imaging techniques. Radiographics 13:889–896PubMedGoogle Scholar
  121. Schwarzbauer C, Syha J et al (1993) Quantification of regional blood volumes by rapid T1 mapping. Magn Reson Med 29:709–712PubMedGoogle Scholar
  122. Shames DM, Kuwatsuru R et al (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med 29:616–622PubMedGoogle Scholar
  123. Siegal T, Rubinstein R et al (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 86:22–27PubMedGoogle Scholar
  124. Song CW, Lokshina A et al (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31:9–16PubMedGoogle Scholar
  125. Stack JP, Redmond OM et al (1990) Breast disease: tissue characterization with Gd-DTPA enhancement profiles. Radiology 174:491–494PubMedGoogle Scholar
  126. St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377CrossRefPubMedGoogle Scholar
  127. Stratmann A, Machein MR et al (1997) Anti-angiogenic gene therapy of malignant glioma. Acta Neurochir Suppl (Wien) 68:105–110Google Scholar
  128. Strugar J, Rothbart D et al (1994) Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 81:560–566PubMedGoogle Scholar
  129. Strugar JG, Criscuolo GR et al (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83:682–689PubMedGoogle Scholar
  130. Su MY, Muhler A et al (1998) Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 39:259–269PubMedGoogle Scholar
  131. Sugahara T, Korogi Y et al (1998) Correlation of MR imagingdetermined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486PubMedGoogle Scholar
  132. Sugahara T, Korogi Y et al (1999a) Contrast enhancement of intracranial lesions: conventional T1-weighted spin-echo versus fast spin-echo MR imaging techniques. AJNR Am J Neuroradiol 20:1554–1559PubMedGoogle Scholar
  133. Sugahara T, Korogi Y et al (1999b) Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 10:114–124PubMedGoogle Scholar
  134. Sugahara T, Korogi Y et al (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315PubMedGoogle Scholar
  135. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedGoogle Scholar
  136. Tofts P, Berkowitz B et al (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumours using a permeability model. Mag Res Med 33:564–568Google Scholar
  137. Tofts PS, Brix G et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMedGoogle Scholar
  138. Uematsu H, Maeda M et al (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imaging — theory and clinical application. Radiology 214:912–917PubMedGoogle Scholar
  139. Uematsu H, Maeda M et al (2001) Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. AJNR Am.J Neuroradiol 22:1915–1919PubMedGoogle Scholar
  140. Van der Sanden BP, Rozijn TH et al (2000) Noninvasive assessment of the functional neovasculature in 9L-glioma growing in rat brain by dynamic 1H magnetic resonance imaging of gadolinium uptake. J Cereb Blood Flow Metab 20:861–870PubMedGoogle Scholar
  141. Villringer A, Rosen BR et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174PubMedGoogle Scholar
  142. Vonken EP, van Osch MJ et al (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827CrossRefPubMedGoogle Scholar
  143. Weisskoff R, Boxerman J et al (1994a) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. Proceedings of the 2nd scientific meeting of the International Society of Magnetic Resonance in Medicine, San Francisco, p 279Google Scholar
  144. Weisskoff RM, Boxerman JL et al (1994b) Simultaneous blood volume and permeability mapping using Gd-based contrast injection. Proceedings of the 2nd scientific meeting of the International Society of Magnetic Resonance in Medicine, San Francisco, p 279Google Scholar
  145. Weisskoff RM, Zuo CS et al (1994c) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610PubMedGoogle Scholar
  146. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–317PubMedGoogle Scholar
  147. Wenz F, Rempp K et al (1996) Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 166:187–193PubMedGoogle Scholar
  148. Wismer GL, Boxton RB et al (1988) Susceptibility induced MR line broadening: application to brain iron mapping. J Comput Assist Tomogr 12:259–265PubMedGoogle Scholar
  149. Worthington BS, Bullock P et al (1991) Clinical experience with contrast enhanced echo-planar imaging of the brain. Magn Reson Med 22:255–258PubMedGoogle Scholar
  150. Yang S, Wetzel S et al. (2002) Dynamic contrast-enhanced T2*-weighted MR imaging of gliomatosis cerebri. AJNR Am.J Neuroradiol 23:350–355PubMedGoogle Scholar
  151. Zhu XP, Li KL et al (1997) Parametric error maps in MR perfusion imaging. British chapter of ISMRM, Manchester, UKGoogle Scholar
  152. Zhu X, Hawnaur JM et al (1999) Quantification of relative blood volume and endothelium permeability of breast neoplasm using dynamic MR imaging. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 1076Google Scholar
  153. Zhu XP, Jackson A et al (2000a) The choroid plexus as an internal reference for quantitative permeability studies in brain tumors. ISMRM, 8th scientific meeting, Denver, 1969Google Scholar
  154. Zhu XP, Laing AD et al (2000b) Parametric mapping of scaled fitting error in dynamic susceptibility contrast enhanced MR perfusion imaging, part I. Statistical analysis. ISMRM, 8th scientific meeting, Denver, p 748Google Scholar
  155. Zhu XP, Li K. L et al (2000c) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xiao Ping Zhu
    • 1
  • Kah Loh Li
    • 2
  • Alan Jackson
    • 3
  1. 1.MR Unit and Department of Radiology, VA Medical CenterUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of RadiologyUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Imaging Science and Biomedical Engineering, The Medical SchoolUniversity of ManchesterManchesterUK

Personalised recommendations