Tracer Kinetic Modelling for T1-Weighted DCE-MRI

  • Geoffrey J. M. Parker
  • David L. Buckley
Part of the Medical Radiology book series (MEDRAD)


Contrast Agent Magn Reson Image Arterial Input Function Permeability Surface Contrast Agent Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedGoogle Scholar
  2. Buckley DL (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magnetic Resonance in Medicine 47(3):601–606CrossRefPubMedGoogle Scholar
  3. Buckley DL, Roberts C, Parker GJ, Logue JP, Hutchinson CH (2003) In vivo determination of the microvascular characteristics of prostate cancer using dynamic contrast-enhanced MRI. 11th Meeting of the International Society for Magnetic Resonance in Medicine:461Google Scholar
  4. Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305PubMedGoogle Scholar
  5. Daldrup HE, Shames DM, Husseini W, Wendland MF, Okuhata Y, Brasch RC (1998) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543PubMedGoogle Scholar
  6. Degani H, Gusis V, Weinstein D, Fields S, Strano S (1997) Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 3:780–782CrossRefPubMedGoogle Scholar
  7. Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMedGoogle Scholar
  8. Evelhoch JL, LoRusso P, DelProposto Z, Stark K, Latif Z, Morton P, Waterton J, Wheeler C, Barge A (2002) Dynamic contrast-enhanced MRI evaluation of the effects of ZD6126 on tumour vasculature in a phase I clinical trial. Proceedings of the Annual Meeting of the ISMRM:2095Google Scholar
  9. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82:4–6PubMedGoogle Scholar
  10. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedGoogle Scholar
  11. Fritz-Hansen T, Rostrup E, Søndergaard L, Ring PB, Amtorp O, Larsson HB (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929PubMedGoogle Scholar
  12. Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, Edelman RR (1999) Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 42:1033–1038CrossRefPubMedGoogle Scholar
  13. Hayes C, Padhani AR, Leach MO (2002) Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 15:154–163CrossRefPubMedGoogle Scholar
  14. Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073PubMedGoogle Scholar
  15. Henderson E, Sykes J, Drost D, Weinmann HJ, Rutt BK, Lee TY (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 12:991–1003CrossRefPubMedGoogle Scholar
  16. Jackson A, Haroon H, Zhu XP, Li KL, Thacker NA, Jayson G (2002) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173CrossRefPubMedGoogle Scholar
  17. Johnson JA, Wilson TA (1966) A model for capillary exchange. Am J Physiol 210:1299–1303PubMedGoogle Scholar
  18. Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41PubMedGoogle Scholar
  19. Koh TS, Zeman V, Darko J, Lee TY, Milosevic MF, Haider M, Warde P, Yeung IW (2001) The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Phys Med Biol 46:1519–1538CrossRefPubMedGoogle Scholar
  20. Larsson HBW, Stubgaard M, Fredricksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain lesions. Magnetic Resonance in Medicine 16:117–131PubMedGoogle Scholar
  21. Li KL, Zhu XP, Waterton J, Jackson A (2000) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 12:347–357CrossRefPubMedGoogle Scholar
  22. Liney GP, Gibbs P, Hayes C, Leach MO, Turnbull LW (1999) Dynamic contrast-enhanced MRI in the differentiation of breast tumors: user-defined versus semi-automated region-of-interest analysis. J Magn Reson Imaging 10(6):945–949CrossRefPubMedGoogle Scholar
  23. Mattiello, J and Evelhoch JL (1991) Relative volume-average murine tumor blood flow measurement via deuterium nuclear magnetic resonance spectroscopy. Magn Reson Med 18(2):320–334PubMedGoogle Scholar
  24. Mayr NA, Yuh WT, Arnholt JC, Ehrhardt JC, Sorosky JI, Magnotta VA, Berbaum KS, Zhen W, Paulino AC, Oberley LW, Sood AK, Buatti JM (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12:1027–1033PubMedGoogle Scholar
  25. Mitchell DG (1997) MR imaging contrast agents—what's in a name?. J Magn Reson Imaging 7:1–4PubMedGoogle Scholar
  26. Ohno Y, Hatabu H, Higashimo T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K (2004) Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. American Journal of Roentgenology 182:73–78PubMedGoogle Scholar
  27. Parker GJM (1997) Monitoring contrast agent kinetics using dynamic MRI: Quantitative and qualitative analysis. Institute of Cancer ResearchGoogle Scholar
  28. Parker GJM, Tanner SF, Leach MO (1996) Pitfalls in the measurement of tissue permeability over short time-scales using multi-compartment models with a low temporal resolution blood input function. 4th Meeting of the International Society for Magnetic Resonance in Medicine: 1582Google Scholar
  29. Parker GJ, Clark D, Watson Y, Buckley DL, Berrisford C, Anderson H, Jackson A, Waterton JC (2003) T1-weighted DCE-MRI applied to lung tumours: Pre-processing and modelling. 11th Meeting of the International Society for Magnetic Resonance in Medicine:1255Google Scholar
  30. Parker GJ, Jackson A, Waterton JC, Buckley DL (2003) Automated arterial input function extraction for T1-weighted DCE-MRI. 11th Meeting of the International Society for Magnetic Resonance in Medicine:1264Google Scholar
  31. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedGoogle Scholar
  32. Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210PubMedGoogle Scholar
  33. Roberts TP (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90PubMedGoogle Scholar
  34. Sha'afi RI (1981) Permeability for water and other polar molecules. Membrane Transport:29–60Google Scholar
  35. St Lawrence KS, Lee T-Y (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: 1. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377CrossRefPubMedGoogle Scholar
  36. Su MY, Jao JC, Nalcioglu O (1994) Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 32:714–724PubMedGoogle Scholar
  37. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101PubMedGoogle Scholar
  38. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedGoogle Scholar
  39. Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568PubMedGoogle Scholar
  40. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HBW, Lee T-Y, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232CrossRefPubMedGoogle Scholar
  41. Vonken EP, van Osch MJ, Bakker CJ, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827CrossRefPubMedGoogle Scholar
  42. Weinmann H-J, Laniado M, Mützel W (1984) Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 16:167–172PubMedGoogle Scholar
  43. Zierler KL (1963) Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circulation Research 7:464–471Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Geoffrey J. M. Parker
    • 1
  • David L. Buckley
    • 1
  1. 1.Imaging Science and Biomedical EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations