Quantification of Dynamic Susceptibility Contrast T2* MRI in Oncology

  • Fernando Calamante
Part of the Medical Radiology book series (MEDRAD)


Cerebral Blood Flow Magn Reson Image Bolus Tracking Dynamic Susceptibility Contrast Blood Pool Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137:676–686Google Scholar
  2. Axel L (1995) Methods using blood pool tracers, part II. In: Le Bihan D (ed) Diffusion and perfusion magnetic resonance imaging. Raven, New York, pp 205–211Google Scholar
  3. Barbier EL, den Boer JA, Peters AR, Rozeboom Ar, Sau J, Bonmartin A (1999) A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images. J Magn Reson Imaging 10:242:253CrossRefPubMedGoogle Scholar
  4. Barbier EL, Lamalle L, Décorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520CrossRefPubMedGoogle Scholar
  5. Bowtell R, Schmitt F (1998) Echo-planar imaging hardware. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Theory, technique and application. Springer, Berlin Heidelberg New York, pp 31–64Google Scholar
  6. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic-susceptibility perturbations. Magn Reson Med 34:555–566Google Scholar
  7. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner (1999) Measuring cerebral blood flow using magnetic resonance techniques. J Cereb Blood Flow Metab 19:701–735CrossRefPubMedGoogle Scholar
  8. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using Singular Value Decomposition. Magn Reson Med 44:466–473CrossRefPubMedGoogle Scholar
  9. Calamante F, Ganesan V, Kirkham FJ, Jan W, Chong WK, Gadian DG, A Connelly (2001) MR perfusion imaging in moyamoya syndrome. Potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 32:2810–2816PubMedGoogle Scholar
  10. Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking MRI in stroke. Assumptions, limitations, and potential implications for clinical use. Stroke 33:1146–1151CrossRefPubMedGoogle Scholar
  11. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799PubMedGoogle Scholar
  12. Donahue KM, Krouwer HGJ, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, Prost RW (2000) Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 43:845–853CrossRefPubMedGoogle Scholar
  13. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. Introduction to theory and methods. Academic, New York, pp 46–65Google Scholar
  14. Fiehler J, von Bezold M, Kucinski T, Knab R, Eckert B, Wittkugel O, Zeumer H, Röther J (2002) Cerebral blood flow predicts lesion growth in acute stoke patients. Stroke 33:2421–2425CrossRefPubMedGoogle Scholar
  15. Fischer H, Ladebeck R (1998) Echo-planar imaging image artifacts. In: Schmitt F, Stehling MK, Turner R (eds) Echo-planar imaging. Theory, technique and application. Springer, Berlin Heidelberg New York, pp 179–200Google Scholar
  16. Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin erythrocytes and magnetite. Magn Reson Med 5:323–345PubMedGoogle Scholar
  17. Grandin CB, Duprez TP, Smith Am, Mataigne F, Peeters A, Oppenheim C, Cosnard G (2001) Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32:1147–1153PubMedGoogle Scholar
  18. Gückel FJ, Brix G, Schmiedek P, Piepgras A, Becker G, Kopke J, Gross H, Georgi M (1996) Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology 201:405–412PubMedGoogle Scholar
  19. Haase A (1990) Snapshot FLASH-MRI. Applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89Google Scholar
  20. Heiland S, Benner T, Debus J, Rempp K, Reith W, Sartor K (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. Magn Reson Imaging 17:21–27PubMedGoogle Scholar
  21. Hillis AE, Wityk RJ, Tuffiash E, Beacuchamp NJ, Jacobs MA, Barker PB, Selnes OA (2001) Hypoperfusion of Wenicke's area predicts severity deficit in acute stroke. Ann Neurol 50:561–566PubMedGoogle Scholar
  22. Jackson A, Kassner A, Zhu XP, Li KL (2001) Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas. J Magn Reson Imaging 14:510–516CrossRefPubMedGoogle Scholar
  23. Jackson A, Kassner A, Williams DA, Reid H, Zhu XP, Li KL (2002) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14PubMedGoogle Scholar
  24. Johnson KM, Tao JZT, Kennan RP, Gore JC (2000) Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44:909–914PubMedGoogle Scholar
  25. Kassner A, Annesley DJ, Zhu XP, Li KL, Kamaly-Asl ID, Watson Y, Jackson A (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113CrossRefPubMedGoogle Scholar
  26. Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122CrossRefPubMedGoogle Scholar
  27. Kluytmans M, van der Grond J, Viergever MA (1998) Gray matter and white matter perfusion imaging in patients with severe carotid artery lesions. Radiology 209:675–682PubMedGoogle Scholar
  28. Levin JM, Kaufman MJ, Ross MJ, Mendelson JH, Maas LC, Cohen M, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663PubMedGoogle Scholar
  29. Levin JM, Wald LL, Kaufman MJ, Ross MJ, Maas LC, Renshaw PF (1998) T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 130:292–295CrossRefPubMedGoogle Scholar
  30. Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Østergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14:659–667CrossRefPubMedGoogle Scholar
  31. Miyati T, Banno T, Mase M, Kasai H, Shundo H, Imazawa M, Ohba S (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235PubMedGoogle Scholar
  32. Neumann-Haefelin T, Wittsack H-J, Wenserski F, Siebler M, Seitz RJ, Mödder U, Freund H-J (1999) Diffusion-and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 30:1591–1597PubMedGoogle Scholar
  33. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725PubMedGoogle Scholar
  34. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part II. Experimental comparison and preliminary results. Magn Reson Med 36:726–736PubMedGoogle Scholar
  35. Østergaard L, Johannsen P, Poulsen PH, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [O-15] H2O positron emission tomography in humans. J Cereb Blood Flow Metab 18:935–940CrossRefPubMedGoogle Scholar
  36. Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–699CrossRefPubMedGoogle Scholar
  37. Press WH, Teukolsky SA, Vetterling WT, Flannery BT (1992) Numerical recipes in C. The art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  38. Perthen JE, Calamante F, Gadian DG, Connelly A (2002) Is quantification of bolus tracking MRI reliable without deconvolution? Magn Reson Med 47:61–67CrossRefPubMedGoogle Scholar
  39. Rempp KA, Brix G, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193:637–641PubMedGoogle Scholar
  40. Røhl L, Ostergaard L, Simonsen CZ, Vestergaard-Poulsen P, Andersen G, Sakoh M, Le Bihan D, Gyldented C (2001) Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32:1140–1146PubMedGoogle Scholar
  41. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265PubMedGoogle Scholar
  42. Schlaug G, Benfield A, Baird AE, Siewert B, Lövblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra. operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537PubMedGoogle Scholar
  43. Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G (1998) Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 18:1143–1156CrossRefPubMedGoogle Scholar
  44. Simonsen CZ, Østergaard L, Vestergaard-Poulsen P, Røhl L, Bjørnerud A, Glydensted C (1999) CBF and CBV measurements by USPIO bolus tracking: reproducibility and comparison with Gd-based values. J Magn Reson Imaging 9:342–347CrossRefPubMedGoogle Scholar
  45. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnar G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43:559–654CrossRefPubMedGoogle Scholar
  46. Sorensen AG (2001) What is the meaning of quantitative CBF? AJNR Am J Neuroradiol 22:235–236PubMedGoogle Scholar
  47. Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging. Principles and current applications. Thieme, Stuttgart, pp 16–20Google Scholar
  48. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean transit time. Radiology 210:519–527PubMedGoogle Scholar
  49. Stehling MK, Turner R, Masfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50PubMedGoogle Scholar
  50. Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it, part I-III. J Physiol 15:1–89Google Scholar
  51. Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315PubMedGoogle Scholar
  52. Thompson HK, Starmer F, Whalen RE, McIntosh HD (1964) Indicator transit time considered as a gamma variate. Circ Res 14:502–515PubMedGoogle Scholar
  53. Van Gelderen P, Grandin C, Petrella JR, Moonen CTW (2000) Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216:603–608PubMedGoogle Scholar
  54. Van Osch MJP, Vonken EPA, Bakker CJG, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45:477–485Google Scholar
  55. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic-susceptibility effects. Magn Reson Med 6:164–174PubMedGoogle Scholar
  56. Vonken EPA, van Osch MJP, Baker CJG, Viergever MA (1999) Measurement of cerebral perfusion with dual-echo multislice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 10:109–117CrossRefPubMedGoogle Scholar
  57. Vonken EPA, van Osch MJP, Baker CJG, Viergever MA (2000) Simultaneous qualitative cerebral perfusion and Gd-DTPA extravasation measurements with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827CrossRefPubMedGoogle Scholar
  58. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit-time? Magn Reson Med 29:553–559Google Scholar
  59. Weisskoff RM, Boxerman JL, Sorensen AG, Kulke SM, Campbell TA, Rosen BR (1994a) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. Proceedings of the 2nd annual meeting of SMRM, San Francisco, p 279Google Scholar
  60. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994b) Microscopic susceptibility variation and transverse relaxation. Theory and experiment. Magn Reson Med 31:601–610Google Scholar
  61. Wirestam R, Ryding E, Lindgren A, Geijer B, Holtas S, Stahlberg F (2000) Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT. MAGMA 11:96–103PubMedGoogle Scholar
  62. Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Sorensen AG (2001) Predicting tissue outcome in acute human cerebral ischemia combined diffusion-and perfusion-weighted MR imaging. Stroke 32:933–942PubMedGoogle Scholar
  63. Zierler KL (1965) Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 16:309–321PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fernando Calamante
    • 1
  1. 1.Radiology and Physics Unit, Institute of Child HealthUniversity College LondonLondonUK

Personalised recommendations