Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander AL, McCreery TT, Barrette TR, Gmitro AF, Unger EC (1996) Microbubbles as novel pressure-sensitive MR contrast agents. Magn Reson Med 35:801–806

    PubMed  Google Scholar 

  • Brasch RC (1991) Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 22:282–287

    PubMed  Google Scholar 

  • Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, Mann J, Ostrowitzki S, Melnyk O (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74

    PubMed  Google Scholar 

  • Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comp Assist Tomogr 15:621–628

    Google Scholar 

  • Burkill GJ, Mannion EM, Healy JC (2001) Technical report: lymph node enhancement at MRI with MnDPDP in primary hepatic carcinoma. Clin Radiol 56:67–71

    Article  PubMed  Google Scholar 

  • Daldrup H, Shames DM, Wendland M, Okuhata Y, Link TM, Rosenau W, Lu Y, Brasch RC (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol 171:941–949

    PubMed  Google Scholar 

  • Daldrup-Link HE, Kaiser A, Link TM, Settles M, Helbich T, Werner M, Roberts TP, Rummeny EJ (2002) Comparison between gadopentetate and feruglose (Clariscan)-enhanced MR-mammography: preliminary clinical experience. Acad Radiol 9:S343–S347

    PubMed  Google Scholar 

  • Demsar F, Roberts TP, Schwickert HC, Shames DM, van Dijke CF, Mann JS, Saeed M, Brasch RC (1997) A MRI spatial mapping technique for microvascular permeability and tissue blood volume based on macromolecular contrast agent distribution. Magn Reson Med 37:236–242

    PubMed  Google Scholar 

  • Diehl SJ, Lehmann KJ, Gaa J, McGill S, Hoffmann V, Georgi M (1999) MR imaging of pancreatic lesions. Comparison of manganese-DPDP and gadolinium chelate. Invest Radiol 34:589–595

    Article  PubMed  Google Scholar 

  • Dvorak AM, Feng D (2001) The vesiculovacuolar organelle (VVO): a new endothelial cell permeability organelle volume. J Histochem Cytochem 49:419–431

    PubMed  Google Scholar 

  • Edelman RR, Mattle HP, Atkinson DJ, Hill T, Finn JP, Mayman C, Ronthal M, Hoogewoud HM, Kleefield J (1990) Cerebral blood flow: assessment with dynamic contrast-enhanced T2*-weighted MR imaging at 1.5 T. Radiology 176:211–220

    PubMed  Google Scholar 

  • Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nature Med 2:1236–1239

    Article  PubMed  Google Scholar 

  • Elster AD (1989) Energy-dispersive x-ray microscopy to trace gadolinium in tissues. Radiology 173:868–870

    PubMed  Google Scholar 

  • Enochs WS, Harsh G, Hochberg F, Weissleder R (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging. 9:228–232

    Article  PubMed  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29[Suppl 16]:10–14

    Article  Google Scholar 

  • Goede V, Fleckenstein G, Dietrich M, Osmers RG, Kuhn W, Augustin HG (1998) Prognostic value of angiogenesis in mammary tumors. Anticancer Res 18:2199–2202

    PubMed  Google Scholar 

  • Gossmann A, Helbich TH, Kuriyama N, Ostrowitzki S, Roberts TP, Shames DM, van Bruggen N, Wendland MF, Israel MA, Brasch RC (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240

    PubMed  Google Scholar 

  • Griebel J, Mayr NA, de Vries A, Knopp MV, Gneiting T, Kremser C, Essig M, Hawighorst H, Lukas PH, Yuh WT (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 7:111–119

    PubMed  Google Scholar 

  • Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  Google Scholar 

  • Harris AL, Zhang H, Moghaddam A (1996) Breast cancer angiogenesis-new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat 38:97–108

    Article  PubMed  Google Scholar 

  • Hawkins CP, Munro PM, MacKenzie F, Kesselring J, Tofts PS, du Boulay EP, Landon DN, McDonald WI (1990) Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113:365–378

    PubMed  Google Scholar 

  • Helbich TH, Roberts TP, Rollins MD, Shames DM, Turetschek K, Hopf HW, Muhler M, Hunt TK, Brasch RC (2002) Noninvasive assessment of wound-healing angiogenesis with contrast-enhanced MRI. Acad Radiol 9:S145–S147

    Article  PubMed  Google Scholar 

  • Henderson E, Sykes J, Drost D, Weinmann HJ, Rutt BK, Lee TY (2000) Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging 2:991–1003

    Article  Google Scholar 

  • Johnson KM, Tao JZ, Kennan RP, Gore JC (1998) Gadolinium-bearing red cells as blood pool MRI contrast agents. Magn Reson Med 40:133–142

    PubMed  Google Scholar 

  • Karczmar GS, River JN, Li J, Vijayakumar S, Goldman Z, Lewis MZ (1994) Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumours. NMR Biomed 7:3–11

    PubMed  Google Scholar 

  • Kuhl CK, Bieling H, Gieseke J, Ebel T, Mielcarek P, Far F, Folkers P, Elevelt A, Schild HH(1997) Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology 202:87–95

    PubMed  Google Scholar 

  • Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 6:117–131

    Google Scholar 

  • Li WH, Parigi G, Fragai M, Luchinat C, Meade TJ (2002) Mechanistic studies of a calcium-dependent MRI contrast agent. Inorg Chem 41:4018–4024

    PubMed  Google Scholar 

  • LoPachin RM Jr, Saubermann AJ (1990) Disruption of cellular elements and water in eurotoxicity: studies using electron probe X-ray microanalysis. Toxicol Appl Pharmacol 106:355–374

    Article  PubMed  Google Scholar 

  • Loubeyre P, de Jaegere T, Miao Y, Landuyt W, Marchal G (1999) Assessment of iron oxide particles (AMI 227) and a gadolinium complex (Gd-DOTA) in dynamic susceptibility contrast MR imagings (FLASH and EPI) in a tumor model implanted in rats. Magn Reson Imaging 17:627–631

    Article  PubMed  Google Scholar 

  • Miller SK, Chu WJ, Pohost GM, Elgavish GA (1991) Improvement of spectral resolution in shift-reagent-aided NMR spectroscopy in the isolated perfused rat heart system. Magn Reson Med 20:184–195

    PubMed  Google Scholar 

  • Moseley ME, Vexler Z, Asgari HS, Mintorovitch J, Derugin N, Rocklage S, Kucharczyk J (1991) Comparison of Gd-and Dy-chelates for T2 contrast-enhanced imaging. Magn Reson Med:259–264

    Google Scholar 

  • Muller-Schimpfle M, Ohmenhauser K, Sand J, Stoll P, Claussen CD (1997)Dynamic 3D-MR mammography: is there a benefit of sophisticated evaluation of enhancement curves for clinical routine? J Magn Reson Imag 7:236–240

    Google Scholar 

  • Noseworthy MD, Bray TM (1998) Effect of oxidative stress on brain damage detected by MRI and in vivo 31P-NMR. Free Radic Biol Med 24:942–951

    PubMed  Google Scholar 

  • Noseworthy MD, Bray TM (2000) Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med 223:175–182

    Article  PubMed  Google Scholar 

  • Noseworthy MD, Morton G, Wright GA (1998) Dynamic MR imaging for assessment of prostate carcinoma. ISMRM workshop on MR in experimental and clinical cancer research, p 110

    Google Scholar 

  • Noseworthy MD, Stanisz GJ, Kim JK, Stainsby JA, Wright GA (1999) Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imag 9:814–820

    Article  PubMed  Google Scholar 

  • Noseworthy MD, Ackerley C, Qi X, Wright GA (2002) Correlating subcellular contrast agent location from dynamic contrast enhanced magnetic resonance imaging (dMRI) and analytical electron microscopy. Acad Radiol 9[Suppl 2]:S514–S518

    Article  PubMed  Google Scholar 

  • Oikawa H, al-Hallaq HA, Lewis MZ, River JN, Kovar DA, Karczmar GS (1997) Spectroscopic imaging of the water resonance with short repetition time to study tumor response to hyperoxia. Magn Reson Med 38:27–32

    PubMed  Google Scholar 

  • Park KS, Choi BI, Won HJ, SEO JB, Kim SH, Kim TK, Han JK, Yeon KM (1998) Intratumoral vascularity of experimentally induced VX2 carcinoma. Invest Radiol 33:39–44

    PubMed  Google Scholar 

  • Pham CD, Roberts TP, van Bruggen N, Melnyk O, Mann J, Ferrara N, Cohen RL, Brasch RC (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 16:225–230

    PubMed  Google Scholar 

  • Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10:277–285

    Article  PubMed  Google Scholar 

  • Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A (2002) Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. Int J Radiat Oncol Biol Phys 53:1185–1191

    Article  PubMed  Google Scholar 

  • Roberts HC, Roberts TP, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    PubMed  Google Scholar 

  • Roberts HC, Roberts TP, Bollen AW, Ley S, Brasch RC, Dillon WP (2001) Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391

    Article  PubMed  Google Scholar 

  • Roberts TPL (1997) Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations. J Magn Reson Imaging 7:82–90

    PubMed  Google Scholar 

  • Roberts TPL, Kucharczyk J, Cox I, Moseley ME, Prayer L, Dillon WP, Harnish P (1994) Sprodiamide injection-enhanced MR imaging of cerebral perfusion: phase I clinical trial results. Invest Radiol 29:S24–S26

    PubMed  Google Scholar 

  • Roberts TPL, Turetschek K, Preda A, Novikov V, Moeglich M, Shames DM, Brasch RC, Weinmann HJ (2002a) Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. Acad Radiol 2:S511–S53

    Article  Google Scholar 

  • Roberts TPL, Preda A, Turetschek K, Novikov V, Moeglich M, Shames DM, Brasch RC, Cavagna FM (2002b) Permeability of B22956/1, a novel protein-binding contrast agent, resolves anti-angiogenic therapy in human breast cancer model. Proc Int Soc Magn Reson Med 319

    Google Scholar 

  • Rosenthal DI, Nurenberg P, Becerra CR, Frenkel EP, Carbone DP, Lum BL, Miller R, Engel J, Young S, Miles D, Renschler MF (1999) A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin Cancer Res 5:739–745

    PubMed  Google Scholar 

  • Saeed M, van Dijke CF, Mann JS, Wendland MF, Rosenau W, Higgins CB, Brasch RC (1998) Histologic confirmation of microvascular hyperpermeability to macromolecular MR contrast medium in reperfused myocardial infarction. J Magn Reson Imaging 8:561–567

    PubMed  Google Scholar 

  • Sahani D, Prasad SR, Maher M, Warshaw AL, Hahn PF, Saini S (2002) Functioning acinar cell pancreatic carcinoma: diagnosis on mangafodipir trisodium (Mn-DPDP)-enhanced MRI. J Comput Assist Tomogr 26:126–128

    PubMed  Google Scholar 

  • Schwickert HC, Roberts TP, Shames DM, van Dijke CF, Disston A, Muhler A, Mann JS, Brasch RC. (1995) Quantification of liver blood volume: comparison of ultra short TI inversion recovery echo planar imaging (ULSTIR-EPI), with dynamic 3D-gradient recalled echo imaging. Magn Reson Med 6:845–852

    Google Scholar 

  • Sigal R, Vogl T, Casselman J, Moulin G, Veillon F, Hermans R, Dubrulle F, Viala J, Bosq J, Mack M, Depondt M, Mattelaer C, Petit P, Champsaur P, Riehm S, Dadashitazehozi Y, de Jaegere T, Marchal G, Chevalier D, Lemaitre L, Kubiak C, Helmberger R, Halimi P (2002) Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) — results of a phase-III multicenter clinical trial. Eur Radiol 12:1104–1113

    Article  PubMed  Google Scholar 

  • Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  Google Scholar 

  • -Stets C, Brandt S, Wallis F, Buchmann J, Gilbert FJ, Heywang-Kobrunner SH (2002) Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging 16:60–68

    Article  PubMed  Google Scholar 

  • Su MY, Wang Z, Carpenter PM, Lao X, Muehler A, Nalcioglu O (1999) Characterization of N-ethyl-N-Nitrosourea-induced malignant and benign breast tumors in rats by using 3 MR contrast agents. J Magn Reson Imaging 9:177–186

    Article  PubMed  Google Scholar 

  • Taherzadeh M, Das AK, Warren JB (1998) Nifedipine increases microvascular permeability via a direct local effect on post-capillary venules. Am J Physiol 275:H1388–H1394

    PubMed  Google Scholar 

  • Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imag 7:91–101

    PubMed  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    PubMed  Google Scholar 

  • Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33:564–568

    PubMed  Google Scholar 

  • Tsuchida C, Yamada H, Maeda M, Sadato N, Matsuda T, Kawamura Y, Hayashi N, Yamamoto K, Yonekura Y, Ishii Y (1997) Evaluation of peri-infarcted hypoperfusion with T2*-weighted dynamic MRI. J Magn Reson Imaging 7:518–522

    PubMed  Google Scholar 

  • Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, Carter WO, Brasch RC (2001a) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    PubMed  Google Scholar 

  • Turetschek K, Huber S, Floyd E, Helbich T, Roberts TP, Shames DM, Tarlo KS, Wendland MF, Brasch RC (2001b) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218:562–569

    PubMed  Google Scholar 

  • Van Dijke CF, Brasch RC, Roberts TP, Weidner N, Mathur A, Shames DM, Mann JS, Demsar F, Lang P, Schwickert HC, (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818

    PubMed  Google Scholar 

  • Van Dijke CF, Kirk BA, Peterfy CG, Genant HK, Brasch RC, Kapila S (1997) Arthritic temporo-mandibular joint: correlation of macromolecular contrast-enhanced MRimaging parameters and histopathologic findings. Radiology 204:825–832

    PubMed  Google Scholar 

  • Van Dijke CF, Mann JS, Rosenau W, Wendland MF, Roberts TP, Roberts HC, Demsar F, Brasch RC (2002) Comparison of MR contrast-enhancing properties of albumin-(biotin)10-(gadopentetate)25, a macromolecular MR blood pool contrast agent, and its microscopic distribution. Acad Radiol Suppl 1:S257–S260

    Google Scholar 

  • Weissleder R, Simonova M, Bogdanova A, Bredow S, Enochs WS, Bogdanov A Jr (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429

    PubMed  Google Scholar 

  • Zhang S, Wu K, Sherry AD (1999) A novel pH sensitive MRI contrast agent. Angew Chem Int Ed Engl 38:3192–3194

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roberts, T.P.L., Noseworthy, M.D. (2005). Contrast Agents for Magnetic Resonance Imaging. In: Jackson, A., Buckley, D.L., Parker, G.J.M. (eds) Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26420-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26420-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42322-5

  • Online ISBN: 978-3-540-26420-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics