Dynamic Contrast-Enhanced MR Imaging for Predicting Tumor Control in Patients with Cervical Cancer

  • Joseph F. Montebello
  • Nina A. Mayr
  • William T. C. Yuh
  • D. Scott McMeekin
  • Dee. H. Wu
  • Michael W. Knopp
Part of the Medical Radiology book series (MEDRAD)


Cervical Cancer Vascular Endothelial Growth Factor Expression Radiat Oncol Biol Phys Magn Reson Image Advanced Cervical Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brady LW, Plenk HP, Hanley JA et al. (1981) Hyperbaric oxygen therapy for carcinoma of the cervix — Stages IIB IIIA IIIB and IVA results of a randomized study by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 7:991–998PubMedGoogle Scholar
  2. Brix G, Semmler W, Port R et al. (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–727Google Scholar
  3. Bush R, Jenkin R, Allt W (1978) Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer 37[Suppl 3]:302–306Google Scholar
  4. Chaplin D, Olive P, Durand R (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47:597–601PubMedGoogle Scholar
  5. Cooper RA, Carrington BM, Loncaster JA et al. (2000) Tumor oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59CrossRefPubMedGoogle Scholar
  6. Costouros NG, Lorang D, Zhang Y, Miller MS, Diehn FE, Hewitt SM, Knopp MV, Li KC, Choyke PL, Alexander HR Libutti SK (2002) Microarray gene expression analysis of murine tumor heterogeneity defined by dynamic contrast-enhanced MRI. Mol Imaging 1:301–308PubMedGoogle Scholar
  7. Dische S, Anderson P, Sealy R et al. (1983) Carcinoma of the cervix-anemia, radiotherapy and hyperbaric oxygen. Br J Radiol 56:251–255PubMedGoogle Scholar
  8. Dunst J, Hansgen G, Laytenschlager C et al. (1999) Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon. Int J Radiat Oncol Biol Phys 43:367–373CrossRefPubMedGoogle Scholar
  9. Evans J, Bergso P (1965) The influence of animia and results of radiotherapy in carcinoma of the cervix. Radiology 48:709–717Google Scholar
  10. Evelhoch J (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259CrossRefPubMedGoogle Scholar
  11. Fyles WF, Milosevic M, Pintilie M et al. (2000) Anemia, hypoxia and transfusion in patients with cervix cancer: a review. Radiother Oncol 57:13–19CrossRefPubMedGoogle Scholar
  12. Fyles A, Milosevic M, Hedley D et al. (2002) Tumor hypoxia has independent predictor impact only in patients with nodenegative cervix cancer. J Clin Oncol 20:680–687CrossRefPubMedGoogle Scholar
  13. Gatenby RA, Kessler HB, Rosenblum JS et al. (1988) Oxygen distribution in squamous cell carcinoma metastasis and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838PubMedGoogle Scholar
  14. Giaccia AJ (1996) Hypoxia stress proteins: survival of the fittest. Sem Radiat Oncol 6:46–58Google Scholar
  15. Gong QY, Brunt JNH, Romaniuk CS et al. (1999) Contrast enhanced dynamic MRI of cervical carcinoma during radiotherapy: early prediction of tumour regression rate. Br J Radiol 72:1177–1184PubMedGoogle Scholar
  16. Graeber TG, Osmanian C, Jacks T et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–91CrossRefPubMedGoogle Scholar
  17. Grigsby PW, Winter K, Wasserman TH et al. (1999) Irradiation with or without misonidazole for patients with stages IIIB and IVA carcinoma of the cervix: Final results of RTOG 80-05. Int J Radiat Oncol Phys 44:513–519CrossRefGoogle Scholar
  18. Hawighorst H, Knapstein P, Weikel W et al. (1996) Cervical carcinoma: comparison of standard and pharmacokinetic MR imaging. Radiology 201:531–539PubMedGoogle Scholar
  19. Hawighorst H, Knapstein P, Weikel W et al. (1997) Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Research. 57:4777–4786PubMedGoogle Scholar
  20. Hawighorst H, Block M, Knopp M et al. (1998) Magnetically labeled water perfusion imaging of the uterine arteries and of normal and malignant cervical tissue: initial experiences. Magn Reson Imaging 16:225–234CrossRefPubMedGoogle Scholar
  21. Hoehn-Berlage M et al.(1992) T1 snapshot FLASH measurement of rat brain glioma: kinetics of the tumor-enhancing contrast agent manganese (III) tetraphenylporphine sulfonate. Magn Reson Med 27:201–213PubMedGoogle Scholar
  22. Höckel M, Schlenger K, Billur A et al. (1996a) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  23. Höckel M, Schlenger K, Mitze M et al. (1996b) Hypoxia and radiation response in human tumors. Sem Radiat Oncol 6:3–9Google Scholar
  24. Höckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276PubMedGoogle Scholar
  25. Hoffmann U, Brix G, Knopp MV et al. (1995) Pharmacokinetic mapping of the breast: a new method for dynamic mammography. Magn Res Med 33:506–514Google Scholar
  26. Kallinowski F, Zander R, Hoeckel M et al. (1990) Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int J Radiat Oncol Biol Phys 19:953–961PubMedGoogle Scholar
  27. Knockle TH, Weitmann HD, Feldmann HJ et al. (1999) Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53:99–104CrossRefPubMedGoogle Scholar
  28. Knopp MV, Hoffmann U, Brix G et al. (1995) Schnelle Kontrastmitteldynamik zur Charakterisierung von Tumoren. Radiologe 35:964–972PubMedGoogle Scholar
  29. Knopp MV, Giesel FL, Marcos H et al. (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12:301–308CrossRefPubMedGoogle Scholar
  30. Kolstad P (1968) Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest 106[suppl]:145–157Google Scholar
  31. Lartigau E, Randrianarivelo H, Avril MF et al. (1997) Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 7:400–406PubMedGoogle Scholar
  32. Loncaster JA, Carrington BM, Sykes JR et al. (2002) Prediction of radiotherapy outcome using dynamic contrst enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 54:759–767CrossRefPubMedGoogle Scholar
  33. Lyng H, Sundfør K, Rofstad EK (1997) Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia. Radiother Oncol 44:163–169PubMedGoogle Scholar
  34. Maor MH, Gillespie BW, Peters LJ et al. (1988) Neutron therapy in cervical cancer: results of a phase III RTOG study. Int J Radiat Oncol Phys 14:885–891Google Scholar
  35. Maruyama Y, van Nagell JR, Yoneda J et al. (1991) A review of californium-252 neutron brachytherapy for cervical cancer. Cancer 68:1189–1197PubMedGoogle Scholar
  36. Mayr NA, Magnotta VA, Ehrhardt JC et al. (1996a) Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 35:915–924CrossRefPubMedGoogle Scholar
  37. Mayr NA, Yuh WTC, Magnotta VA et al. (1996b) Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys 36:623–633CrossRefPubMedGoogle Scholar
  38. Mayr NA, Yuh WTC, Zheng J et al. (1998) Prediction of tumor control in patients with cervical cancer: analysis of combined volume and dynamic enhancement pattern by MR imaging. Am J Roentgenol 170:177–182Google Scholar
  39. Mayr NA, Hawighorst H, Yuh WTC et al. (1999) MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. J Magn Reson Imaging 10:267–276CrossRefPubMedGoogle Scholar
  40. Mayr NA, Yuh WTC, Arnholt JC et al. (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12:1027–1033PubMedGoogle Scholar
  41. Nagele T, Petersen D, Klose U et al. (1993) Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR 14:89–98PubMedGoogle Scholar
  42. Neeman M, Abramovitch R, Schiffenbauer Y et al. (1997) Regulation of angiogenesis by hypoxic stress: from solid tumors to the ovarian follicle. Int J Exp Pathol 78:57–70CrossRefPubMedGoogle Scholar
  43. Nordsmark M, Hoyer M, Keller J et al. (1996) The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 35:701–708CrossRefPubMedGoogle Scholar
  44. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6:10–21PubMedGoogle Scholar
  45. Palcic B, Skarsgard LD (1984) Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat Res 100:328–339PubMedGoogle Scholar
  46. Perez CA, Grisby PW, Nene SM et al. (1992) Effect of tumor size on the prognosis of carcinoma of the uterine cervix treated with irradiation alone. Cancer 69:2796–2806PubMedGoogle Scholar
  47. Postema S, Pattynama P, van Rijswijk C et al. (1999) Cervical carcinoma: can dynamic contrast-enhanced MR imaging help predict tumor aggressiveness? Radiology 210:217–220PubMedGoogle Scholar
  48. Rofstad EK, Sundfør K, Lyng H et al. (2000) Hypoxic-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 83:354–359PubMedGoogle Scholar
  49. Rose PG, Bundy BN, Watkins EB et al. (1999) Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340:1145–1153CrossRefGoogle Scholar
  50. Semenza GL (2000a) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103CrossRefPubMedGoogle Scholar
  51. Semenza Gl (2000 b ) HIF-1 mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMedGoogle Scholar
  52. Shweiki D, Itin A, Soffer D et al. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845CrossRefPubMedGoogle Scholar
  53. Shweiki D, Neeman M, Itin A et al. (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multiple spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92:768–772PubMedGoogle Scholar
  54. Stein I, Neeman M, Shweiki D et al. (1995) Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15:5363–5368PubMedGoogle Scholar
  55. Sundfør K, Lyng H, Rofstad EK (1998) Tumor hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78:822–827PubMedGoogle Scholar
  56. Tannock I (1972) Oxygen diffusion and the distribution of cellular radiosensitivity in tumors. Br J Radiol 52:650–656Google Scholar
  57. Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? Lancet 351[Suppl 2]:SII9–16 (reveiw)CrossRefPubMedGoogle Scholar
  58. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549PubMedGoogle Scholar
  59. Thoms WW, Eifel PJ, Smith TL et al. (1992) Bulky endocervical carcinoma: a 23-year experience. Int J Radiat Oncol Biol Phys 23:491–499PubMedGoogle Scholar
  60. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedGoogle Scholar
  61. Tofts PS, Brix G, Buckley DL et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232CrossRefPubMedGoogle Scholar
  62. Urtasun R, Chapman J, Raleigh J et al. (1986) Binding of H-3-misonidazole to solid human tumors as a measure of tumor hypoxia. Int J Radiat Oncol Biol Phys 12:1263–1267PubMedGoogle Scholar
  63. Vermeulen PB, Gasparini G, Toi M et al. (1996) Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A:2474–2484CrossRefPubMedGoogle Scholar
  64. Weidner N, Semple JP, Welch WR (1991) Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med 324:1–8Google Scholar
  65. Yamashita Y, Baba T, Baba Y et al. (2000) Dynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology 216: 803–809PubMedGoogle Scholar
  66. Yuh WT (1999) An exciting and challenging role for the advanced contrast MR imaging. J Magn Reson Imaging 10:221–222CrossRefPubMedGoogle Scholar
  67. Zaino RJ, Ward S, Delgado G et al. (1992) Histopathologic predictors of the behavior of surgically treated stage IB squamous cell carcinoma of the cervix. Cancer 69:1750–1758PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joseph F. Montebello
    • 1
  • Nina A. Mayr
    • 2
  • William T. C. Yuh
    • 1
  • D. Scott McMeekin
    • 3
  • Dee. H. Wu
    • 4
  • Michael W. Knopp
    • 5
  1. 1.Radiation Oncology CenterOklahoma University Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Radiology, Oklahoma University Health Sciences CenterUniversity HospitalOklahoma CityUSA
  3. 3.Department of Obstetrics and GynecologyOklahoma University Health Sciences CenterOklahoma CityUSA
  4. 4.Department of RadiologyOklahoma University Health Sciences CenterOklahoma CityUSA
  5. 5.Division of Imaging Research, Department of RadiologyOhio State UniversityColumbusUSA

Personalised recommendations