Magnetic Resonance Imaging of the Brain in Preterm Infants

  • Luca A. Ramenghi
  • Fabio Mosca
  • Serena Counsell
  • Mary A. Rutherford


Magnetic resonance imaging (MRI) allows the developing brain to be studied in superb detail either in the fetus or in the infant born preterm. Serial imaging provides valuable insights into both normal maturation and the response of the developing brain to a variety of insults.


White Matter Preterm Infant Posterior Horn Periventricular White Matter Periventricular Leukomalacia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall AS, Young IR, Davies FJ, Mohapatra SN. A dedicated magnetic resonance system in a neonatal intensive therapy unit. In: Bradley WG, Bydder GM (eds) Advanced MR Imaging Techniques. London: Martin Dunitz, 1997:281–289.Google Scholar
  2. 2.
    Battin MR, Maalouf EF, Counsell SJ, Herlihy AH, Rutherford MA, Azzopardi D, Edwards AD. Magnetic resonance imaging of the brain in preterm infants: visualization of the germinal matrix, early myelination and cortical folding. Pediatrics 1998;101:957–962.PubMedCrossRefGoogle Scholar
  3. 3.
    Maalouf E, Duggan P, Rutherford M, Counsell SJ, Fletcher AM, Battin M, Cowan F, Edward AD. Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999;135:351–357.PubMedCrossRefGoogle Scholar
  4. 4.
    Pennock J. Patient preparation, safety and hazards in imaging infants and children. In: Rutherford MA (ed) MRI of the Neonatal Brain. London: WB Saunders, 2002.Google Scholar
  5. 5.
    Cowan FM. Sedation for magnetic resonance scanning for infants and young children. In: Whitman JG, McCloy R (eds) Principles and Practice of Sedation. London: Blackwell Healthcare, 1997:209–213.Google Scholar
  6. 6.
    Herlihy AH, Counsell SJ, Rutherford MA, Bydder GM, Hajnal JV. T1 and T2 measurements of the preterm brain. ISMRM 1999, abstract #531.Google Scholar
  7. 7.
    Counsell S, Kennea N, Herlihy A, Allsop J, Harrison M, Cowan FM, Hajnal J, Edward B, Edwards AD, Rutherford M. T2 Relaxation values in the developing preterm brain. AJNR Am J Neuroradiol 2003;24:1654–1660.PubMedGoogle Scholar
  8. 8.
    Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ, Hayward R, Bryant DR, Payne JA, Levene MI, Whitelaw A. Clinical NMR imaging of the brain in children: normal and neurologic disease. AJNR Am J Neuroradiol 1983;4:1013–1026.Google Scholar
  9. 9.
    Counsell SJ, Maalouf EF, Fletcher AM, Duggan P, Battin M, Lewis HJ, Edwards AD, Bydder GM, Rutherford MA. Magnetic resonance imaging assessment of myelination in the very preterm brain. AJNR Am J Neurorad 2002;23:872–881.Google Scholar
  10. 10.
    Tanner SF, Ramenghi LA, Ridgway JP, Berry E, Saysell MA, Martinez D, Arthur RJ, Smith MA, Levene MI. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol 2000;174:1643–1649.PubMedGoogle Scholar
  11. 11.
    Neil J, Miller J, Mukherjee P, Huppi PS. Diffusion tensor imaging of normal and injured developing human brain-a technical review. NMR Biomed 2002;15:543–552.PubMedCrossRefGoogle Scholar
  12. 12.
    Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998;43:224–235.PubMedCrossRefGoogle Scholar
  13. 13.
    Barkovich AJ, Gressens P, Evrard P. Formation, maturation and disorders of the brain neocortex. AJNR Am J Neuroradiol 1992;13:447–461.PubMedGoogle Scholar
  14. 14.
    Blakemore C. Introduction: mysteries in the making of the cerebral cortex. In: Ciba Foundation Symposium #193. Development of the Cerebral Cortex. Wiley and Sons, England 1995.Google Scholar
  15. 15.
    Van der Knaap MS, Wezel-Meijler G, Barth PG, Barkhof F, Adèr HJ, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996;200:389–396.PubMedGoogle Scholar
  16. 16.
    Saeed N, Ajayi-Obe M, Counsell S, Hajnal J, Rutherford MA. Convolution index computation of the cortex using image segmentation and contour following. ISMRM 1998. Abstract #2076.Google Scholar
  17. 17.
    Ajayi-Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD. Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000;356(9236):1162–1163.PubMedCrossRefGoogle Scholar
  18. 18.
    Kapellou O, Ajaye-Obe M, Kennea N, Counsell S, Allsopp J, Saeed N, Duggan P, Maalouf E, Laroche S, Cowan F, Rutherford M, Edwards AD. Quantitation of brain development in preterm infants treated with corticosteroids. Pediatr Res 2003;53(Suppl):2746.Google Scholar
  19. 19.
    Modi N, Lewis H, Al Naqeeb N, Ajayi-Obe M, Dore CJ, Rutherford M. The effects of repeated antenatal glucocorticoid therapy on the developing brain. Pediatr Res 2001;50:581–585.PubMedCrossRefGoogle Scholar
  20. 20.
    Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, Jolesz FA, Volpe JJ. Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 2001;107:217–221.PubMedCrossRefGoogle Scholar
  21. 21.
    Cooke RW, Abernethy LJ. Cranial magnetic resonance imaging and school performance in very low birth weight infants in adolescence. Arch Dis Child Fetal Neonatal Ed 1999;81:F116–F121.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooke RW, Foulder-Hughes L. Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch Dis Child 2003;88:482–487.PubMedCrossRefGoogle Scholar
  23. 23.
    Stewart AL, Rifkin L, Amess PN, Kirkbride V, Townsend JP, Miller DH, Lewis SW, Kingsley DP, Moseley IF, Foster O, Murray RM. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet 1999;353(9165):1653–1657.PubMedCrossRefGoogle Scholar
  24. 24.
    Girard NJ, Raybaud CA. Ventriculomegaly and pericerebral CSF collection in the fetus: early stage of benign external hydrocephalus? Childs Nerv Syst 2001;17:239–245.PubMedCrossRefGoogle Scholar
  25. 25.
    Feess-Higgins A, Larroche JC. Development of the human fetal brain. Paris INSERM 1987.Google Scholar
  26. 26.
    Evans DJ, Childs AM, Ramenghi LA, Arthur RJ, Levene MI. Magnetic-resonance imaging of the brain of premature infants. Lancet 1997;350(9076):522.PubMedCrossRefGoogle Scholar
  27. 27.
    Childs AM, Ramenghi LA, Cornette L, Tanner SF, Arthur RJ, Martinez D, Levene MI. Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 2001;22:1577–1582.PubMedGoogle Scholar
  28. 28.
    Childs AM, Ramenghi LA, Evans DJ, Ridgeway J, Saysell M, Martinez D, Arthur R, Tanner S, Levene MI. MR features of developing periventricular white matter in preterm infants: Evidence of glial cell migration. AJNR Am J Neuroradiol 1998;19:971–976.PubMedGoogle Scholar
  29. 29.
    Felderhoff-Mueser U, Rutherford M, Squier W, Cox P, Maalouf E, Counsell S, Bydder G, Edwards AD. Relation between magnetic resonance images and histopathological findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol 1999;20:1349–1357.PubMedGoogle Scholar
  30. 30.
    Sie LTL, van der Knaap MS, van Wezel-Meijler, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 1997;28:97–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol 1977;1:86–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Counsell S, Allsop J, Harrison M, Larkman D, Kennea N, Kapellou O, Cowan F, Hajnal J, Edwards A, Rutherford M. Diffusion weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003;112:1–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Leviton A, Gilles F. Ventriculomegaly, delayed myelination, white matter hypoplasia, and “periventricular”leukomalacia: how are they related? Pediatr Neurol 1996;15:127–136.PubMedCrossRefGoogle Scholar
  34. 34.
    Hüppi PS. Advances in postnatal neuroimaging: relevance to pathogenesis and treatment of brain injury. Clin Perinatol 2002;29:827–856.PubMedCrossRefGoogle Scholar
  35. 35.
    Slattery mm, Morrison J. Preterm delivery. Lancet 2002;360:1489–1497.PubMedCrossRefGoogle Scholar
  36. 36.
    Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR. Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med 2000;343:378–384.PubMedCrossRefGoogle Scholar
  37. 37.
    Briscoe J, Gathercole SE, Marlow N. Everyday memory and cognitive ability in children born very prematurely. J Child Psychol Psychiatry 2001;42:749–754.PubMedCrossRefGoogle Scholar
  38. 38.
    Botting N, Powls A, Cooke RW, Marlow N. Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years. J Child Psychol Psychiatry 1997;38:931–941.PubMedCrossRefGoogle Scholar
  39. 39.
    Counsell SJ, Rutherford AM, Cowan FM, Edwards AD. Magnetic resonance imaging of preterm brain injury. Arch Dis Child Fetal Neonatal Ed 2003:88:F269–F274.PubMedCrossRefGoogle Scholar
  40. 40.
    Volpe JJ. Neurologic outcome of prematurity. Arch Neurol 1998;55:297–300.PubMedCrossRefGoogle Scholar
  41. 41.
    Volpe JJ. Cerebral white matter injury of the premature infant-more common than you think. Pediatrics 2003;112:176–180.PubMedCrossRefGoogle Scholar
  42. 42.
    Ramenghi LA, Jayashinge D, Childs AM, Tanner S, Arthur R, Martienz D, Levene M. White matter lesions of preterm infants and MRI appearance of glial cell migration: an intriguing correlation. Childs Nerv Syst 2000;16:50a.Google Scholar
  43. 43.
    Govaert P, deVries LS. An Atlas of Neonatal Brain Sonography. Mac Keith-Cambridge University Press, 1997.Google Scholar
  44. 44.
    Paneth N, Rudelli R, Kazam E, Monte W. White matter damage, terminology, typology, pathogenesis in brain damage in the preterm infant. Mac Keith-Cambridge University Press, 1994.Google Scholar
  45. 45.
    Virchow R. Zur pathologischen Anatomie des Gehirns. 1. Congenitale Encephalitis und Myelitis. Archiv fur pathologische Anatomie und Physiologische und fur klinische Medicin 1868;38:129–142.CrossRefGoogle Scholar
  46. 46.
    Parrot J. Etude sur la steatose interstitielle diffuse de l’encephale chez le nouveau-né. Archives de Physiologie Normale et Pathologique 1868;1:622–642.Google Scholar
  47. 47.
    Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 1962;7:386–410.PubMedGoogle Scholar
  48. 48.
    Okumura A, Hayakawa F, Kato T, Itomi K, Maruyama K, Ishihara N, Kubota T, Suzuki M, Sato Y, Kuno K, Watanabe K. Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics 2001;107:469–475.PubMedCrossRefGoogle Scholar
  49. 49.
    Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L, Spitzer AR. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics 1996;98:918:924.PubMedGoogle Scholar
  50. 50.
    Dammann O, Leviton A. Maternal intrauterine cytokines, and brain damage in the preterm newborn. Pediatr Res 1997;42:1–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kubota H, Ohsone Y, Oka F, Sueyoshi T, Takanashi J, Kohno Y. Significance of clinical risk factors of cystic periventricular leukomalacia in infants with different birthweights. Acta Paediatr 2001;90:302–308.PubMedCrossRefGoogle Scholar
  52. 52.
    Kadhim H, Tabarki B, Verellen G, De Prez C, Rona AM, Sebire G. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 2001;56:1278–1284.PubMedGoogle Scholar
  53. 53.
    Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the development window of vulnerability for human perinatal white matter injury. J Neurosci 2001;21:1302–1312.PubMedGoogle Scholar
  54. 54.
    Van den Bergh R. Centrifugal elements in the vascular pattern of the deep intracerebral blood supply. Angiology 1969;20:88–94.PubMedCrossRefGoogle Scholar
  55. 55.
    DeReuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971;5:321–334.CrossRefGoogle Scholar
  56. 56.
    Takashima S, Tanaka K. Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol 1978;35:11–16.PubMedGoogle Scholar
  57. 57.
    Kuban KCK, Gilles FH. Human telencephalic angiogenesis. Ann Neurol 1985;17:539–548.PubMedCrossRefGoogle Scholar
  58. 58.
    Nelson MD, Gonzalez-Gomez I, Gilles FH. The search for human telencephalic ventriculofugal arteries. AJNR Am J Neuroradiol 1991;12:215–222.PubMedGoogle Scholar
  59. 59.
    Levene MI, Wigglesworth JS, Dubowitz V. Hemorrhagic periventricular leukomalacia in the neonate: a real-time ultrasound study. Pediatrics 1983;71:794–797.PubMedGoogle Scholar
  60. 60.
    Trounce JQ, Levene MI. Diagnosis and outcome of subcortical cystic leucomalacia. Arch Dis Child 1985;60:1041–1044.PubMedCrossRefGoogle Scholar
  61. 61.
    de Vries LS, Eken P, Dubowitz LMS. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res 1992;49:1–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Arthur R, Ramenghi L. Imaging the neonatal brain. In: Levene MI, Chevernack FA, Whittle M (eds) Fetal ad Neonatal Neurology and Neurosurgery. Edinburgh: Churchill Livingstone, 2001:57–85.Google Scholar
  63. 63.
    Baker LL, Stevenson DK, Enzmann DR. End stage periventricular leukomalacia: MR imaging evaluation. Radiology 1988;168:809–815.PubMedGoogle Scholar
  64. 64.
    de Vries LS, Groenendaal F, Meiners L. Ischemic lesions in the preterm babies. In: Rutherford M (ed) MRI of the Neonatal Brain. London: Saunders, 2002.Google Scholar
  65. 65.
    Tartaro A, Sabatino G, Delli Pizzi C, Ramenghi L, Bonomo L. Usefulness and limitations of neuroradiologic test (CT, US, MRI) in periventricular leukomalacia. Radiol Med 1990;5:604–608.Google Scholar
  66. 66.
    Lin Y, Okumura A, Hayakawa F, Kato K, Kuno T, Watanabe K. Quantitative evaluation of thalami and basal ganglia in infants with periventricular leukomalacia. Dev Med Child Neurol 2001;43:481–485.PubMedCrossRefGoogle Scholar
  67. 67.
    Roelants-van Rijn AM, Groenendaal F, Beek FJ, Eken P, van Haastert IC, de Vries LS. Parenchymal brain injury in the preterm infant: comparison of cranial ultrasound, MRI and neurodevelopmental outcome. Neuropediatrics 2001;32:80–89.PubMedCrossRefGoogle Scholar
  68. 68.
    Schouman-Claeys E, Henry-Feugeas MC, Roset F, Larroche JC, Hassine D, Sadik JC, Frija G, Gabilan JC. Periventricular leukomalacia: correlation between MR imaging and autopsy finding during the first 2 months of life. Radiology 1993;189:59–64.PubMedGoogle Scholar
  69. 69.
    Barkovich AJ. Pediatric Neuroimaging, 2nd edn. Philadelphia: Lippincott Williams & Wilkins, 2000.Google Scholar
  70. 70.
    Childs AM, Cornette L, Ramenghi LA, Tanner SF, Arthur RJ, Martinez D, Levene MI. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 2001;56:647–655.PubMedCrossRefGoogle Scholar
  71. 71.
    Cornette LG, Tanner SF, Ramenghi LA, Miall LS, Childs AM, Arthur RJ, Martinez D, Levene MI. Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 2002;86:F171–F177.PubMedCrossRefGoogle Scholar
  72. 72.
    Leech RW, Alvord EC. Morphologic variations in periventricular leukomalacia. Am J Pathol 1974;74:591–602.PubMedGoogle Scholar
  73. 73.
    Roelants-van Rijn AM, Nikkels PG, Groenendaal F, van Der Grond J, Barth PG, Snoeck I, Beek FJ, de Vries LS. Neonatal diffusion-weighted MR imaging: relation with histopathology or follow-up MR examination. Neuropediatrics 2001;32:286–294.PubMedCrossRefGoogle Scholar
  74. 74.
    Inder T, Huppi PS, Zientara GP, Maier SE, Jolesz FA, di Salvo D, Robertson R, Barnes PD, Volpe JJ. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 1999;134:631–634.PubMedCrossRefGoogle Scholar
  75. 75.
    Battin M, Rutherford MA. Magnetic resonance imaging of the brain in preterm infants: 24 weeks’ gestation to term. In: Rutherford M (ed) MRI of the Neonatal Brain. London: Saunders, 2002.Google Scholar
  76. 76.
    Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, Edwards AD. Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001;107:719–727.PubMedCrossRefGoogle Scholar
  77. 77.
    Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003;24:805–809.PubMedGoogle Scholar
  78. 78.
    Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ. Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 1999;46:755–760.PubMedCrossRefGoogle Scholar
  79. 79.
    Cioni G, Fazzi B, Ipata AE, Canapicchi R, van Hof-van Duin J. Correlation between cerebral visual impairment and magnetic resonance imaging in children with neonatal encephalopathy. Dev Med Child Neurol 1996;38:120–132.PubMedGoogle Scholar
  80. 80.
    Lanzi G, Fazzi E, Uggetti C, Cavallini A, Danova S, Egitto MG, Ginevra OF, Salati R, Bianchi PE. Cerebral visual impairment in periventricular leukomalacia. Neuropediatrics 1998;29:145–150.PubMedCrossRefGoogle Scholar
  81. 81.
    Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: white matter lesions of the neocortex. J Neuropathol Exp Neurol 1997;56:219–235.PubMedCrossRefGoogle Scholar
  82. 82.
    Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. III: gray matter lesions of the neocortex. J Neuropathol Exp Neurol 1999;58:407–429.PubMedCrossRefGoogle Scholar
  83. 83.
    Volpe JJ. Neurology of the Newborn, 2nd edn. Philadelphia: Saunders, 2001.Google Scholar
  84. 84.
    Schwartz P. Die traumatische Gehirnerweichung des Neugeborenen Zeitschrift fur Kinderheilkunde 1922;31:51–79.Google Scholar
  85. 85.
    Rydberg E. Cerebral injury in the new-born children consequent on birth trauma: with an inquiry into the normal and pathological anatomy of the neuroglia. Acta Pathologica et Microbiologica Scandinavica 1932;10:1–247.Google Scholar
  86. 86.
    Panet N, Rudelli R, Kazam E, Monte W. The pathology of germinal matrix/intraventricular hemorrhage: a review. In: Panet N, Rudelli R, Kazam E, Monte W (eds) Brain Damage in the Preterm Infant. London: Mac Keith-Cambridge University Press, 1994.Google Scholar
  87. 87.
    Leech RW, Kohnen P. Subependymal and intraventricular hemorrhages in the newborn. Am J Pahol 1974;77:465–475.Google Scholar
  88. 88.
    Nakamura Y, Okudera T, Fukuda S, Hashimoto T. Germinal matrix hemorrhage of venous origin in preterm neonates. Hum Pathol 1990;21:1059–1062.PubMedCrossRefGoogle Scholar
  89. 89.
    Moody DM, Brown WR, Challa VR, Block SM. Alkaline phosphatase histochemical staining in the study of germinal matrix hemorrhage and brain vascular morphology in a very-low-birth-weight neonate. Pediatr Res 1994;35:424–430.PubMedCrossRefGoogle Scholar
  90. 90.
    Ghazi-Birry HS, Brown WR, Moody DM, Challa VR, Block SR, Reboussin DM. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 1997;18:219–229.PubMedGoogle Scholar
  91. 91.
    Ramenghi LA, Fumagalli M, Mondello S, Stucchi I, Gatti L, Tenconi MP, Orsi A, Mosca F. GMH-IVH (Germinal-Matrix Intraventricular Hemorrhage) and thrombophilic pattern in preterm babies. Pediatr Res 2003;53(Suppl):3041.Google Scholar
  92. 92.
    Petaja J, Hiltunen L, Fellman V. Increased risk of intraventricular hemorrhage in preterm infants with thrombophilia. Pediatr Res 2001;49:643–646.PubMedCrossRefGoogle Scholar
  93. 93.
    Levene MI, de Vries L. Neonatal intracranial hemorrhage. In: Levene MI, Chevernak FA, Whittle M (eds) Fetal and Neonatal Neurology and Neurosurgery. Edinburgh: Churchill Livingstone, 2001.Google Scholar
  94. 94.
    Larroche JC. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 1972;20:287–299.PubMedCrossRefGoogle Scholar
  95. 95.
    Larroche JC. Sub-ependymal pseudocysts in the newborn. Biol Neonate 1972;21:170–183.PubMedCrossRefGoogle Scholar
  96. 96.
    Shaw CM, Alvord EC. Subependymal germinolysis. Arch Neurol 1974;31:374–381.PubMedGoogle Scholar
  97. 97.
    Ramenghi LA, Domizio S, Quartulli L, Sabatino G. Atypical site of congenital pseudocysts of germinal matrix. ESPR Annual Meeting, Edinburgh 1993.Google Scholar
  98. 98.
    Rademaker KJ, de Vries L, Barth PG. Subependymal pseudocysts: ultrasound diagnosis and findings at follow-up. Acta Paediatr Scand 1993;82:394–399.CrossRefGoogle Scholar
  99. 99.
    Ramenghi LA, Domizio S, Quartulli L, Sabatino G. Prenatal pseudocysts of the germinal matrix in preterm infants. J Clin Ultrasound 1997;25:169–173.PubMedCrossRefGoogle Scholar
  100. 100.
    Dewbry KC, Bates RI. The value of transfontanellar ultrasound in infants. Br J Radiol 1981;54:1044–1052.CrossRefGoogle Scholar
  101. 101.
    Blankenberg FG, Norbash AM, Lane B, Stevenson DK, Bracci PM, Enzmann DR. Neonatal intracranial ischemia and hemorrhage: diagnosis with US, CT, and MR imaging. Radiology 1996;199:253–259.PubMedGoogle Scholar
  102. 102.
    Keeney SE, Adcock EW, McArdle CB. Prospective observations of 100 high-risk neonates by high field (1.5 Tesla) magnetic resonance imaging of the central nervous system: 1. Intraventricular and extracerebral lesions. Pediatrics 1991;87:421–430.PubMedGoogle Scholar
  103. 103.
    Fletcher JM, McCauley SR, Brandt ME, Bohan TP, Kramer LA, Francis DJ, Thorstad K, Brookshire BL. Regional brain tissue composition in children with hydrocephalus. Relationships with cognitive development. Arch Neurol 1996;53:549–557.PubMedGoogle Scholar
  104. 104.
    Moriette G, Relier JP, Larroche JC. Intraventricular hemorrhages in hyaline membrane disease. Arch Fr Pediatr 1977;34:492–504.PubMedGoogle Scholar
  105. 105.
    Hope PL, Gould SJ, Howard S, Hamilton PA, Costello AM, Reynolds EO. Precision of ultrasound diagnosis of pathologically verified lesions in the brains of very preterm infants. Dev Med Child Neurol 1988;30:457–471.PubMedCrossRefGoogle Scholar
  106. 106.
    Darrow VC, Alvord EC Jr, Mack LA, Hodson WA. Histologic evolution of the reactions to hemorrhage in the premature human infant’s brain. A combined ultrasound and autopsy study and a comparison with the reaction in adults. Am J Pathol 1988;130:44–58.PubMedGoogle Scholar
  107. 107.
    Grunnet ML, Shields WD. Cerebellar hemorrhage in the premature infant. J Pediatr 1976;88:605–608.PubMedCrossRefGoogle Scholar
  108. 108.
    Martin R, Roessmann U, Fanaroff A. Massive intracerebellar hemorrhage in low-birth-weight infants. J Pediatr 1976;89:290–293.PubMedCrossRefGoogle Scholar
  109. 109.
    Tuck S, Ment LR. A follow-up study of very low birth weight infants receiving ventilatory support by face mask. Dev Med Child Neurol 1980;22:633–641.PubMedCrossRefGoogle Scholar
  110. 110.
    Donat JF, Okazaki H, Kleinberg F. Cerebellar hemorrhage in newborn infants. Am J Dis Child 1979;133:441.PubMedGoogle Scholar
  111. 111.
    Kennea NL, Rutherford MA, Counsell SJ, Herlihy AH, Allsop JM, Harrison MC, Cowan FM, Hajnal JV, Edwards AD. Brain injury in extremely preterm infants at birth and at term corrected age using magnetic resonance imaging. Pediatr Res 2002;51(Suppl):2559.Google Scholar
  112. 112.
    Merrill JD, Piecuch RE, Fell SC, Barkovich AJ, Goldstein RB. A new pattern of cerebellar hemorrhages in preterm infants. Pediatrics 1998;102:E62.PubMedCrossRefGoogle Scholar
  113. 113.
    Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, Mitchell CD. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 2001;43:685–691.PubMedCrossRefGoogle Scholar
  114. 114.
    Barkovich AJ, Linden CL. Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic considerations. AJNR Am J Neuroradiol 1994;15:703–715.PubMedGoogle Scholar
  115. 115.
    Ramenghi LA, Gill BJ, Tanner SF, Martinez D, Arthur R, Levene MI. Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V (Leiden) mutation. Neuropediatrics 2002;33:97–99.PubMedCrossRefGoogle Scholar
  116. 116.
    Rutherford MA. Hemorrhagic lesions of the newborn brain. In: Rutherford M (ed) MRI of the Neonatal Brain. London: Saunders, 2002.Google Scholar
  117. 117.
    Nosarti C, Al-Asady MH, Frangou S, Stewart AL, Rifkin L, Murray RM. Adolescents who were born very preterm have decreased brain volumes. Brain 2002;125:1616–1623.PubMedCrossRefGoogle Scholar
  118. 118.
    Stewart AL, Rifkin L, Amess PN, Kirkbride V, Townsend JP, Miller DH, Lewis SW, Kingsley DP, Moseley IF, Foster O, Murray RM. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet 1999;353:1653–1657.PubMedCrossRefGoogle Scholar
  119. 119.
    Abernethy LJ, Palaniappan M, Cooke RW. Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Arch Dis Child 2002;87:279–283.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luca A. Ramenghi
    • 1
  • Fabio Mosca
    • 1
  • Serena Counsell
    • 2
  • Mary A. Rutherford
    • 2
  1. 1.Department of NeonatologyMangiagalli Clinical HospitalMilanItaly
  2. 2.Imaging Sciences Department, Robert Steiner MR UnitHammersmith HospitalLondonUK

Personalised recommendations