Embryology of the Spine and Spinal Cord

  • Martin Catala


The spine and spinal cord form a couple of structures whose development is highly coordinated, explaining why abnormal development of one structure is usually associated with the maldevelopment of the other. The spinal cord differentiates, as does the whole central nervous system, from the neural tube. The spine is yielded by the somites, which form the so-called paraxial mesoderm. The neural tube arises from the neural plate during neurulation, which takes place during the fourth week of gestation in humans. The neural plate results from induction of the primitive ectoderm during neural induction (a process that takes place during the third week of gestation in humans).


Neural Tube Chick Embryo Neural Crest Cell Sonic Hedgehog Neural Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spemann H. Embryonic development and induction. Yale University Press, New Haven, 1938.Google Scholar
  2. 2.
    Wilson PA, Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by BMP-4. Nature 1995;376:331–333.CrossRefPubMedGoogle Scholar
  3. 3.
    Suzuki A, Kaneko E, Ueno N, Hemmati-Brivanlou A. Regulation of epidermal induction by BMP2 and BMP7 signaling. Dev Biol 1997;189:112–122.CrossRefPubMedGoogle Scholar
  4. 4.
    Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996;86:589–598.CrossRefPubMedGoogle Scholar
  5. 5.
    Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996;86:599–606.CrossRefPubMedGoogle Scholar
  6. 6.
    Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD. Initiation of neural induction by FGF signalling before gastrulation. Nature 2000;406:74–78.CrossRefPubMedGoogle Scholar
  7. 7.
    Mitchell TS, Sheets MD. The FGFR pathway is required for the trunk-inducing functions of Spemann’s organizer. Dev Biol 2001;237:295–305.CrossRefPubMedGoogle Scholar
  8. 8.
    Wilson SI, Rydström A, Trimborn T, Willert K, Nusse R, Jessell TM, Edlund T. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 2001;411:325–330.CrossRefPubMedGoogle Scholar
  9. 9.
    Bachvarova RF, Skromme I, Stern CD. Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development 1998;125:3521–3534.PubMedGoogle Scholar
  10. 10.
    Skromme I, Stern CD. A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 2002;114:115–118.CrossRefGoogle Scholar
  11. 11.
    Patten I, Kulesa P, Shen MM, Fraser S, Placzek M. Distinct modes of floor plate induction in the chick embryo. Development 2003;130:4809–4821.CrossRefPubMedGoogle Scholar
  12. 12.
    Catala M, Teillet MA, De Robertis EM, Le Douarin NM. A spinal cord fate map in the avian embryo: while regressing, Hensen’s node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 1996;122:2599–2610.PubMedGoogle Scholar
  13. 13.
    Catala M. Genetic control of caudal development. Clin Genet 2002;61:89–96.CrossRefPubMedGoogle Scholar
  14. 14.
    Schoenwolf GC, Smith JL. Mechanisms of neurulation: traditional viewpoint and recent advances. Development 1990;109:243–270.PubMedGoogle Scholar
  15. 15.
    Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dynamics 2003;221:117–145.CrossRefGoogle Scholar
  16. 16.
    Schoenwolf GC, Sheard P. Shaping and bending of the avian neural plate as analysed with a fluorescent-histochemical marker. Development 1989;105:17–25.PubMedGoogle Scholar
  17. 17.
    Schoenwolf GC. Cell movements driving neurulation in avian embryos. Development 1991;Suppl 2:157–168.PubMedGoogle Scholar
  18. 18.
    Moury JD, Schoenwolf GC. Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions in the neural plate/epidermis transition zone. Dev Dynamics 1995;204:323–338.Google Scholar
  19. 19.
    Schoenwolf GC, Alvarez IS. Roles of the neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 1989;106:427–439.PubMedGoogle Scholar
  20. 20.
    Smith JL, Schoenwolf GC. Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J Exp Zool 1989;250:49–62.CrossRefPubMedGoogle Scholar
  21. 21.
    Alvarez IS, Schoenwolf GC. Expansion of the surface epithelium provides the major extrinsic force for bending of the neural plate. J Exp Zool 1992;261:340–348.CrossRefPubMedGoogle Scholar
  22. 22.
    Shum AS, Copp AJ. Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat Embryol 1996;194:65–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Ybot-Gonzalez P, Copp AJ. Bending of the neural plate during mouse spinal neurulation is independent of actin microfilaments. Dev Dynamics 1999;215:273–283.CrossRefGoogle Scholar
  24. 24.
    Schoenwolf GC. Observations on closure of the neuropores in the chick embryo. Am J Anat 1979;155:445–466.CrossRefPubMedGoogle Scholar
  25. 25.
    Catala M, Teillet MA, Le Douarin NM. Organization and development of the tail bud analysed with the quail-chick chimaera system. Mech Dev 1995;51:51–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Kelsey H. Subdivision of the spinal canal in the lumbar region of chick embryos. Proc Royal Soc Victoria 1911;24:152–155.Google Scholar
  27. 27.
    Holmdahl DE. Experimentelle Untersuchungen über die lage der Grenze zwischen primärer und sekundärer Körperentwicklung beim Huhn. Anatomischer Anzeiger 1925;59:393–39Google Scholar
  28. 28.
    Pasteels J. Etudes sur la gastrulation des vertebras méroblastiques. III. Oiseaux. IV. Conclusions générales. Arch Biol 1937;48:381–488.Google Scholar
  29. 29.
    van Straaten HW, Thors F, Wiertz-Hoessels L, Hekking JW, Drukker J. Effect of a notochordal implant on the early morphogenesis of the neural tube and neuroblasts: histometrical and histological results. Dev Biol 1985;110:247–254.CrossRefPubMedGoogle Scholar
  30. 30.
    Placzek M, Tessier-Lavigne M, Yamada T, Jessell T, Dodd J. Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 1990;250:985–988.CrossRefPubMedGoogle Scholar
  31. 31.
    Yamada Y, Placzek M, Tanaka H, Dodd J, Jessell TM. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 1991;64:635–647.CrossRefPubMedGoogle Scholar
  32. 32.
    Hirano S, Fuse S, Sohal GS. The effect of the floor plate on pattern and polarity in the developing central nervous system. Science 1991;251:310–313.CrossRefPubMedGoogle Scholar
  33. 33.
    van Straaten HW, Hekking JW. Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat Embryol 1991;184:55–63.CrossRefPubMedGoogle Scholar
  34. 34.
    Teillet MA, Lapointe F, Le Douarin NM. The relationships between notochord and floor plate in vertebrate development revisited. Proc Natl Acad Sci USA 1998;95:11733–11738.CrossRefPubMedGoogle Scholar
  35. 35.
    Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993;75:1417–1430.CrossRefPubMedGoogle Scholar
  36. 36.
    Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S, Ruiz i Altaba A, Tanabe Y, Placzek M, edlund T, Jessell TM, Dodd J. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994;76:761–775.CrossRefPubMedGoogle Scholar
  37. 38.
    Platt KA, Michaud J, Joyner AL. Expression of the mouse Gli and Ptc genes is adjacent to embryonic sources of hedgehog suggesting a conservation of pathways between flies and mice. Mech Dev 1997;62:121–135.CrossRefPubMedGoogle Scholar
  38. 38.
    Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC. Diminished Sonic hedgehog signalling and lack of floor plate differentiation in Gli2 mutant mice. Development 1998;125:2533–2543.PubMedGoogle Scholar
  39. 39.
    Thibert C, Teillet MA, Lapointe F, Mazelin L, Le Douarin NM, Mehlen P. Inhibition of neuroepithelial Patched-induced apoptosis by Sonic hedgehog. Science 2003;301:843–846.CrossRefPubMedGoogle Scholar
  40. 40.
    Briscoe J, Pierani A, Jessell TM, Ericson J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 2000;101:435–445.CrossRefPubMedGoogle Scholar
  41. 41.
    Briscoe J, Ericson J. Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 2001;11:43–49.CrossRefPubMedGoogle Scholar
  42. 42.
    Basler K, Edlund T, Jessell TM, Yamada T. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGFß family member. Cell 1993;73:687–702.CrossRefPubMedGoogle Scholar
  43. 43.
    Liem KF, Tremmi G, Roelink H, Jessell TM. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 1995;82:969–979.CrossRefPubMedGoogle Scholar
  44. 44.
    Liem KF, Jessell TM, Briscoe J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 2000;127:4855–4866.PubMedGoogle Scholar
  45. 45.
    Helms AW, Johnson JE. Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 2003;13:42–49.CrossRefPubMedGoogle Scholar
  46. 46.
    Le Douarin NM, Kalcheim C. The Neural Crest, 2nd edn. Cambridge: Cambridge University Press, 1999.Google Scholar
  47. 47.
    Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 1974;41:163–184.Google Scholar
  48. 48.
    Rickmann M, Fawcett JW, Keynes RJ. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 1985;90:437–455.PubMedGoogle Scholar
  49. 49.
    Bronner-Fraser M. Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 1986;115:44–55.CrossRefPubMedGoogle Scholar
  50. 50.
    Teillet MA, Kalcheim C, Le Douarin NM. Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Dev Biol 1987;120:329–347.CrossRefPubMedGoogle Scholar
  51. 51.
    Serbedzija GN, Bronner-Fraser M, Fraser SE. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 1989;106:809–816.PubMedGoogle Scholar
  52. 52.
    Newgreen DF, Powell ME, Moser B. Spatiotemporal changes in HNK-1/L2 glycoconjugates on avian embryo somite and neural crest cells. Dev Biol 1990;139:100–120.CrossRefPubMedGoogle Scholar
  53. 53.
    Krull CE. Segmental organization of neural crest migration. Mech Dev 2001;105:37–45.CrossRefPubMedGoogle Scholar
  54. 54.
    Debby-Brafman A, Burstyn-Cohen T, Klar A, Kalcheim C. F-spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration. Neuron 1999;22:475–488.CrossRefPubMedGoogle Scholar
  55. 55.
    Ring C, Hassell H, Hafter W. Expression pattern of collagen IX and potential role in segmentation of the peripheral nervous system. Dev Biol 1996;180:41–53.CrossRefPubMedGoogle Scholar
  56. 56.
    Tucker RP, Hagios C, Chiquet-Ehrismann R, Lawler J, Hall RJ, Erickson CA. Thrombospondin-1 and neural crest cell migration. Dev Dynamics 1999;214:312–322.CrossRefGoogle Scholar
  57. 57.
    Ranscht B, Bronner-Fraser M. T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo. Development 1991;111:15–22.PubMedGoogle Scholar
  58. 58.
    Krull CE, Collazo A, Fraser SE, Bronner-Fraser M. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 1997;7:571–580.CrossRefPubMedGoogle Scholar
  59. 59.
    Kalcheim C, Teillet MA. Consequences of somite manipulation on the pattern of dorsal root ganglion development. Development 1989;106:85–93.PubMedGoogle Scholar
  60. 60.
    Narayanan CH. An experimental analysis of peripheral nerve pattern development in the chick. J Exp Zool 1964;156:49–60.CrossRefPubMedGoogle Scholar
  61. 61.
    Lance-Jones C. The effect of somite manipulation on the development of motoneuron projection patterns in the embryonic chick hindlimb. Dev Biol 1988;126:408–419.CrossRefPubMedGoogle Scholar
  62. 62.
    Catala M, Ziller C, Lapointe F, Le Douarin NM. The developmental potentials of the caudalmost part of the neural crest are restricted to melanocytes and glia. Mech Dev 2000;95:77–87.CrossRefPubMedGoogle Scholar
  63. 63.
    Martins-Green M. Origin of the dorsal surface of the neural tube by progressive delamination of epidermal ectoderm and neuroepithelium: implications for neurulation and neural tube defects. Development 1988;103:687–706.PubMedGoogle Scholar
  64. 64.
    Pourquié O, Coltey M, Teillet MA, Ordahl C, Le Douarin NM. Control of dorsoventral patterning of somatic derivatives by notochord and floor plate. Proc Natl Acad Sci USA 1993;90:5242–5246.CrossRefPubMedGoogle Scholar
  65. 65.
    Fan CM, Tessier-Lavigne M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 1994;79:1175–1186.CrossRefPubMedGoogle Scholar
  66. 66.
    Spence MS, Yip J, Erickson CA. The dorsal neural tube organizes the dermamyotome and induces axial myocytes in the avian embryo. Development 1996;122:231–241.PubMedGoogle Scholar
  67. 67.
    Johnson RL, Laufer E, Riddle RD, Tabin C. Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 1994;79:1165–1173.CrossRefPubMedGoogle Scholar
  68. 68.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996;383:407–413.CrossRefPubMedGoogle Scholar
  69. 69.
    Ikeya M, Takada S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 1998;125:4969–4976.PubMedGoogle Scholar
  70. 70.
    Borycki A-G, Brown AMC, Emerson CP. Shh and Wnt signalling pathways converge to control Gli gene activation in avian somites. Development 2000;127:2075–2087.PubMedGoogle Scholar
  71. 71.
    Holtzer H, Detwiler SR. An experimental analysis of the development of the spinal column. III. Induction of skeletogenous cells. J Exp Zool 1953;123:337–369.CrossRefGoogle Scholar
  72. 72.
    Lash J, Holtzer S, Holtzer H. An experimental analysis of the development of the spinal column. VI. Aspects of cartilage induction. Exp Cell Res 1957;13:292–303.CrossRefPubMedGoogle Scholar
  73. 73.
    Monsoro-Burq AH, Bontoux M, Teillet MA, Le Douarin NM. Heterogeneity in the development of the vertebra. Proc Natl Acad Sci USA 1994;91:10435–10439.CrossRefPubMedGoogle Scholar
  74. 74.
    Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HHQ, Chi KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui CC. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 1997;124:113–123.PubMedGoogle Scholar
  75. 75.
    Watanabe Y, Duprez D, Monsoro-Burq AH, Vincent C, Le Douarin NM. Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins. Development 1998;125:2631–2639.PubMedGoogle Scholar
  76. 76.
    Monsoro-Burq AH, Le Douarin NM. Duality of molecular signaling involved in vertebral chondrogenesis. Curr Top Dev Biol 2000;48:43–75.CrossRefPubMedGoogle Scholar
  77. 77.
    Catala M. Embryogenesis. Why do we need a new explanation for the emergence of spina bifida with lipoma? Childs Nerv Syst 1997;13:336–340.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Catala
    • 1
  1. 1.Laboratory of Histology and Embryology Pitiè-Salpêtrière School of MedicineUniversity of Paris 6ParisFrance

Personalised recommendations