Embryology of the Head and Neck

  • Martin Catala


The skeleton of the head and neck represents a very complex set of bones whose development is both complicated and precise. It is by now impossible to write a precise and thorough chapter to account for the tremendous amount of new data gained by experimental embryology. So, I will focus my presentation on: (1) some elements of descriptive embryology that are mandatory to give the readers landmarks for human development; (2) the origin of the cells that are fated to form these structures and their subsequent development; (3) tissue interactions that could account for the malformative associations that can be observed in humans; and (4) genetic controls of these processes.


Neural Tube Neural Crest Neural Crest Cell Branchial Arch Parietal Bone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kubis N, Zuber M, Méder JF, Mas JL. CT scan of the skull base in internal carotid artery hypoplasia. Cerebrovasc Dis 1996; 6:40–44.CrossRefGoogle Scholar
  2. 2.
    Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 1993; 117:409–429.PubMedGoogle Scholar
  3. 3.
    Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol 2002; 241:106–116.CrossRefPubMedGoogle Scholar
  4. 4.
    Noden DM. An analysis of the migratory behavior of avian cephalic neural crest cells. Dev Biol 1975; 42:106–130.CrossRefPubMedGoogle Scholar
  5. 5.
    Serbedzija GN, Bronner-Fraser M, Fraser SE. Vital dye analysis of cranial neural crest migration in the mouse embryo. Development 1992; 116: 297–307.PubMedGoogle Scholar
  6. 6.
    Thorogood P. The developmental specification of the vertebrate skull. Development 1998; 103(Suppl):141–153.Google Scholar
  7. 7.
    Seufert DW, Hanken J, Klymkowsky MW. Type II collagen distribution during cranial development in Xenopus laevis. Anat Embryol 1994; 189:81–89.CrossRefPubMedGoogle Scholar
  8. 8.
    Moiseiwitsch JRD, Lauder JM. Serotonin regulates mouse cranial neural crest migration. Proc Natl Acad Sci USA 1995; 92:7182–7186.CrossRefPubMedGoogle Scholar
  9. 9.
    Schowing J. Influence inductrice de l’encéphale et de la chorde sur la morphogenèse du squelette cranien chez l’embryon de poulet. J Embryol Exp Morphol 1961; 9:326–334.PubMedGoogle Scholar
  10. 10.
    Schowing J. Influence inductrice de l’encéphale embryonnaire sur le développement du crane chez le poulet. I. Influence de l’excision des territoires nerveux antérieurs sur le développement cranien. J Embryol Exp Morphol 1968; 19:9–22.PubMedGoogle Scholar
  11. 11.
    Schowing J. Influence inductrice de l’encéphale embryonnaire sur le développement du crane chez le poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et postérieur sur le développement cranien. J Embryol Exp Morphol 1968; 19:23–32.PubMedGoogle Scholar
  12. 12.
    Schowing J. Mise en évidence du rôle inducteur de l’encéphale dans l’ostéogenèse du crane embryonnaire du poulet. J Embryol Exp Morphol 1 1968; 19:88–93.Google Scholar
  13. 13.
    Tyler MS. Development of the frontal bone and cranial meninges in the embryonic chick: an experimental study of tissue interactions. Anat Rec 1983; 206:61–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim HJ, Rice DP, Kettunen PJ, Thesleff I. FGF-, BMP-and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998; 125:1241–1251.PubMedGoogle Scholar
  15. 15.
    Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 2003; 130:5269–5280.CrossRefPubMedGoogle Scholar
  16. 16.
    Lufkin T, Mark M, Hart CP, Dollé P, Le Meur M, Chambon P. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359:835–841.CrossRefPubMedGoogle Scholar
  17. 17.
    Martin JF, Bradley A, Olson EN. The paired-like homeo box gene Mhox is required for early events of skeletogenesis in multiple lineages. Genes Dev 1995; 9:1237–1249.CrossRefPubMedGoogle Scholar
  18. 18.
    Jabs EW, Müller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Sparkes R, Warman ML, Muliken JB, Snead ML, Maxson R. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993; 75:443–450.CrossRefPubMedGoogle Scholar
  19. 19.
    Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genet 2000; 24:391–395.CrossRefPubMedGoogle Scholar
  20. 20.
    Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development Nature Genet 1994; 6:348–356.CrossRefPubMedGoogle Scholar
  21. 21.
    Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial and appendicular skeletal development. Genes Dev 2002; 16:1089–1101.CrossRefPubMedGoogle Scholar
  22. 22.
    Newberry EP, Latifi T, Battaile JT, Towler DA. Structure-function analysis of Msx2-mediated transcriptional suppression. Biochemistry 1997; 36:10451–10462.CrossRefPubMedGoogle Scholar
  23. 23.
    Newberry EP, Latifi T, Towler DA. Reciprocal regultion of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry 1998; 37:16360–16368.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma L, Golden S, Wu L, Maxson R. The molecular basis of Boston-type craniosynostosis: the Pro148 — His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mol Genet 1996; 5:1915–1920.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu YH, Kundu R, Wu L, Luo W, Ignelzi MA, Snead ML, Maxson RE. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci USA 1995; 92:6137–6141.CrossRefPubMedGoogle Scholar
  26. 26.
    Wilkie AO, Tang Z, Elanko N, Walsh S, Twigg SR, Hurst JA, Wall SA, Chrzanowska KH, Maxson RE. Functional haploinsufficiency of the human homeobox gene MSX2 causes defect in skull ossification. Nature Genet 2000; 24:387–390.CrossRefPubMedGoogle Scholar
  27. 27.
    Lajeunie E, Catala M, Renier D. Craniosynostosis: from a clinical description to an understanding of bone formation of the skull. Childs Nerv Syst 1999; 15:676–680.CrossRefPubMedGoogle Scholar
  28. 28.
    Galvin BD, Hart KC, Meyer AN, Webster MK, Donoghue DJ. Constitutive receptor activation by Crouzon syndrome mutations in fibroblast growth factor receptor (FGFR)2 and FGFR2 / Neu chimeras. Proc Natl Acad Sci USA 1996; 93:7894–7899.CrossRefPubMedGoogle Scholar
  29. 29.
    Iseki S, Wilkie AO, Heath JK, Ishimaru T, Eto K, Morriss-Kay GM. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2. Development 1997; 124: 3375–3384.PubMedGoogle Scholar
  30. 30.
    Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation-and proliferation-related roles in the developing mouse skull vault. Development 1999; 126:5611–5620.PubMedGoogle Scholar
  31. 31.
    Rice DPC, Aberg T, Chan Y-S, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127:1845–1855.PubMedGoogle Scholar
  32. 32.
    Mansukhani A, Bellosta P, Sahni M, Basilico C. Signaling by fibroblast growth factors (FGF) and grosth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 2000; 149:1297–1308.CrossRefPubMedGoogle Scholar
  33. 33.
    Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002; 129:3783–3793.PubMedGoogle Scholar
  34. 34.
    El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonnaventure J. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nature Genet 1997; 15:42–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW. Mutations in TWIST, a basic helix-loophelix transcription factor, in Saethre-Chotzen syndrome. Nature Genet 1997; 15:36–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Müller F, O’Rahilly R. The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat 1980; 159:33–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Kjaer I, Fischer-Hansen B. The adenohypophysis and the cranial base in early human development. J Craniofac Genet Dev Biol 1995; 15:157–161.PubMedGoogle Scholar
  38. 38.
    Kjaer I. Ossification of the human fetal basicranium. J Craniofac Genet Dev Biol 1990; 10:29–38.PubMedGoogle Scholar
  39. 39.
    Bach-Petersen S, Kjaer I. Ossification of the lateral components in the human prenatal cranial base. J Craniofac Genet Dev Biol 1993; 13:76–82.PubMedGoogle Scholar
  40. 40.
    Lettice LA, Purdie LA, Carlson GJ, Kilanowski F, Dorin J, Hill RE. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci USA 1999; 96:9650–9700.CrossRefGoogle Scholar
  41. 41.
    Pera EM, Kessel M. Patterning of the chick forebrain by the prechordal plate. Development 1997; 124:1699–1706.Google Scholar
  42. 42.
    Arnold WH, Sperber GH, Machin GA. Cranio-facial skeletal development in three human synophtalmic holoprosencephalic fetuses. Anat Anz 1988; 180:45–53.Google Scholar
  43. 43.
    Kjaer I, Keeling JW, Fischer Hansen B, Becktor KB. Midline skeletodental morphology in holoprosencephaly. Cleft Palate Craniofac 2002; J39:357–363.CrossRefGoogle Scholar
  44. 44.
    Frenz DV, Van De Water TR. Epithelial control of periotoic mesenchyme chondrogenesis. Dev Biol 1991; 144:38–46.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang W, ten Dijke P, Wu DK. BMP pathways are involved in the otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Dev Biol 2002; 251:380–394.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu W, Oh SH, Kang YkY, Li G, Doan TM, Little M, Li L, Ahn K, Crenshaw EB, Frenz DA. Bone morphogenetic protein 4 (BMP4): a regulator of capsule chondrogenesis in the developing mouse inner ear. Dev Dyn 2003; 226:427–438.CrossRefPubMedGoogle Scholar
  47. 47.
    Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet 1996; 14:357–360.CrossRefPubMedGoogle Scholar
  48. 48.
    Gailani MR, Bale SJ, Leffell DJ, Di Giovanna JJ, Peck GL, Poliak S, Drum MA, Pastakia B, McBride OW, Kase R, Greene M, Mulvihill JJ, Bale AE. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 1992; 69:111–117.CrossRefPubMedGoogle Scholar
  49. 49.
    Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet 1996; 14:78–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 1991; 352:539–540.CrossRefPubMedGoogle Scholar
  51. 51.
    Francis-West P, Ladher R, Barlow A, Graveson A. Signalling interactions during facial development. Mech Dev 1998; 75:3–28.CrossRefPubMedGoogle Scholar
  52. 52.
    Köntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 1996; 122:3229–3242.PubMedGoogle Scholar
  53. 53.
    Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw debvelopment. Development 1998; 125:3445–3459.PubMedGoogle Scholar
  54. 54.
    Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao W-H, Kamada N, Jishage K, Ouchi Y, Azuma S, Toyoda Y, Ishikawa T, Kumada M, Yazaki Y. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 1994; 368:703–710.CrossRefPubMedGoogle Scholar
  55. 55.
    Clouthier DE, Hosoda K, Richardson JA, Williams C, Yanasigawa H, Kuwaki T, Kumada M, Hammer RE, Yanasigawa M. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 1998; 125:813–824.PubMedGoogle Scholar
  56. 56.
    Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE. Dual genetic pathways of endothelin-mediated intercellular signalling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 1998; 125:825–836.PubMedGoogle Scholar
  57. 57.
    Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 1998; 13:3136–3148.CrossRefGoogle Scholar
  58. 58.
    Thomas T, Kurihara H, Yamagishi H, Kurihara Y, Yazaki Y, Olson EN, Srivastava D. A signalling cascade involving endothelin-1, dHAND and Msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998; 125:3005–3014.PubMedGoogle Scholar
  59. 59.
    Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 1983; 96:144–165.CrossRefPubMedGoogle Scholar
  60. 60.
    Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993; 75:1333–1349.CrossRefPubMedGoogle Scholar
  61. 61.
    Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993; 75:1317–1331.CrossRefPubMedGoogle Scholar
  62. 62.
    Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 2000; 127:5355–5365.PubMedGoogle Scholar
  63. 63.
    Prince V, Lumsden A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 1994; 120:911–923.PubMedGoogle Scholar
  64. 64.
    Pasqualetti M, Ori M, Nardi I, Rijli FM. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 2000; 127:5367–5378.PubMedGoogle Scholar
  65. 65.
    Qiu M, Bulfone A, Martinez S, Meneses JJ, Shimamura K, Pedersen RA, Rubenstein JLR. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second arch derivatives and abnormal differentiation in the forebrain. Genes Dev 1995; 9:2523–2538.CrossRefPubMedGoogle Scholar
  66. 66.
    Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, Presley R, Pedersen RA, Rubenstein JLR. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and-2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol 1997; 185:165–184.CrossRefPubMedGoogle Scholar
  67. 67.
    Acampora D, Merlo G, Paleari L, Zerega B, Mantero S, Barbieri O, Postiglione MP, Simeone A, Levi G. Craniofacial, vestibular and bone defects in mice lacking the distal-less related gene Dlx5. Development 1999; 126:3795–3809.PubMedGoogle Scholar
  68. 68.
    Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen R, Rubenstein JLR. Dlx5 regulates regional development of the branchial arches and sensory capsules. Development 1999; 126:3831–3846.PubMedGoogle Scholar
  69. 69.
    Trainor PA, Tam PP. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 1995; 121:2569–2582.PubMedGoogle Scholar
  70. 70.
    Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 1994; 164:409–419.CrossRefPubMedGoogle Scholar
  71. 71.
    Mac Cann JP, Owens PDA, Wilson DJ. Chick frontonasal process excision significantly affects mid-facial development. Anat Embryol 1991; 184:171–178.CrossRefGoogle Scholar
  72. 72.
    Garabedian EN, Ducroz V, Roger G, Denoyelle F, Catala M. Nasal fossa malformations and paramedian facial cleft: new perspectives. J Craniofac Genet Dev Biol 1999; 19:12–19.PubMedGoogle Scholar
  73. 73.
    Merlo GR, Zerega B, Paleari L, Trombino S, Mantero S, Levi G. Multiple functions of Dlx genes. Int J Dev Biol 2000; 44:619–626.PubMedGoogle Scholar
  74. 74.
    Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell intercations regulating mandibular and maxillary arch patterning. Development 2000; 127:403–412.PubMedGoogle Scholar
  75. 75.
    Depew MJ, Lufkin T, Rubenstein JLR. Specification of jaw subdivisions by Dlx genes. Science 2002; 298:381–385.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Catala
    • 1
  1. 1.Laboratory of Histology and Embryology Pitiè-Salpêtrière School of MedicineUniversity of Paris 6ParisFrance

Personalised recommendations