Diffusion-Weighted, Perfusion-Weighted, and Functional MR Imaging

  • Ernst Martin-Fiori
  • Thierry A. G. M. Huisman


Over the last decades, magnetic resonance imaging (MRI) has revolutionized our understanding of the dynamics of organ morphology and physiology in health and disease. In conventional MRI, most of the signal arises from differences in the amount of bulk water between tissues, and image contrast is determined by T1 and T2 relaxation mechanisms that originate from interactions on a molecular level, either between water protons or via exchange with protons at the surface of macromolecules. Therefore, image contrast of a tissue or organ structure appears rather homogeneous on conventional MRI.


White Matter Apparent Diffusion Coefficient Fractional Anisotropy Cerebral Blood Volume Blood Oxygenation Level Dependent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439–445.PubMedGoogle Scholar
  2. 2.
    Rumpel H, Nedelcu J, Aguzzi A, Martin E. Late glial swelling after acute cerebral hypoxia-ischemia in the neonatal rat: a combined magnetic resonance and histochemical study. Pediatr Res 1997;42:54–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Rutherford MA, Cowan FM, Manzur AY, Dubowitz LM, Pennock JM, Hajnal JV, Young IR, Bydder GM. MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J Comput Assist Tomogr 1991;15:188–198.PubMedCrossRefGoogle Scholar
  4. 4.
    Cowan FM, Pennock JM, Hanrahan JD, Manji KP, Edwards AD. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics 1994;25:172–175.PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson AJ, Lee BC, Lin W. Echoplanar diffusion-weighted imaging in neonates and infants with suspected hypoxicischemic injury: correlation with patient outcome. AJR Am J Roentgenol 1999;172:219–226.PubMedGoogle Scholar
  6. 6.
    Phillips MD, Zimmerman RA. Diffusion imaging in pediatric hypoxic ischemia injury. Neuroimaging Clin North Am 1999;9:41–52.Google Scholar
  7. 7.
    Tofts PS. Novel MR image contrast mechanisms in epilepsy. Magn Reson Imaging 1995;13:1099–1106.PubMedCrossRefGoogle Scholar
  8. 8.
    Wall CJ, Kendall EJ, Obenaus A. Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus. AJNR Am J Neuroradiol 2000;21:1841–1852.PubMedGoogle Scholar
  9. 9.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presesnce of a time-dependent field gradient. J Chem Phys 1965;42:288–292.CrossRefGoogle Scholar
  10. 10.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–407.PubMedGoogle Scholar
  11. 11.
    Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999;212:333–339.PubMedGoogle Scholar
  12. 12.
    Merboldt KD, Hanicke W, Frahm J. Diffusion imaging using stimulated echoes. Magn Reson Med 1991;19:233–239.PubMedCrossRefGoogle Scholar
  13. 13.
    Li TQ, Takahashi AM, Hindmarsh T, Moseley ME. ADC mapping by means of a single-shot spiral MRI technique with application in acute cerebral ischemia. Magn Reson Med 1999;41:143–147.PubMedCrossRefGoogle Scholar
  14. 14.
    Il’yasov KA, Hennig J. Single-shot diffusion-weighted RARE sequence: application for temperature monitoring during hyperthermia session. J Magn Reson Imaging 1998;8:1296–1305.CrossRefGoogle Scholar
  15. 15.
    Hennig J, Scheffler K. Hyperechoes. Magn Reson Med 2001;46:6–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA. Line scan diffusion imaging. Magn Reson Med 1996;36:509–519.PubMedCrossRefGoogle Scholar
  17. 17.
    Maier SE. Slab scan diffusion imaging. Magn Reson Med 2001;46:1136–1143.PubMedCrossRefGoogle Scholar
  18. 18.
    Mori S, van Zijl PC. A motion correction scheme by twin-echo navigation for diffusion-weighted magnetic resonance imaging with multiple RF echo acquisition. Magn Reson Med 1998;40:511–516.PubMedCrossRefGoogle Scholar
  19. 19.
    Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V. Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 1994;12:455–460.PubMedCrossRefGoogle Scholar
  20. 20.
    Norris DG, Driesel W. Online motion correction for diffusion-weighted imaging using navigator echoes: Application to RARE imaging without sensitivity loss. Magn Reson Med 2001;45:729–733.PubMedCrossRefGoogle Scholar
  21. 21.
    Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T. Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 1994;15:231–238.PubMedGoogle Scholar
  22. 22.
    Robertson RL, Maier SE, Robson CD, Mulkern RV, Karas PM, Barnes PD. MR line scan diffusion imaging of the brain in children. AJNR Am J Neuroradiol 1999;20:419–425.PubMedGoogle Scholar
  23. 23.
    Bydder GM, Rutherford MA. Diffusion-weighted imaging of the brain in neonates and infants. Magn Reson Imaging Clin N Am 2001;9:83–98.PubMedGoogle Scholar
  24. 24.
    Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC. Changes in brain water diffusion during childhood. Neuroradiology 1999;41:929–934.PubMedCrossRefGoogle Scholar
  25. 25.
    Takeda K, Nomura Y, Sakuma H, Tagami T, Okuda Y, Nakagawa T. MR assessment of normal brain development in neonates and infants: comparative study of T1-and diffusion-weighted images. J Comput Assist Tomogr 1997;21:1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in diffusion-weighted MRI. Magn Reson Med 1991;19:321–326.PubMedCrossRefGoogle Scholar
  27. 27.
    Basser PJ, Mattiello J, Turner R, Le Bihan D. Diffusion tensor echo-planar imagingof human brain. Proceedings of the SMRM, 1993; p 584.Google Scholar
  28. 28.
    Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999;42:515–525.PubMedCrossRefGoogle Scholar
  29. 29.
    Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995;8:333–344.PubMedCrossRefGoogle Scholar
  30. 30.
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–267.PubMedCrossRefGoogle Scholar
  31. 31.
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247–254.PubMedCrossRefGoogle Scholar
  32. 32.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534–546.PubMedCrossRefGoogle Scholar
  33. 33.
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusiontensor MRI. J Magn Reson B 1996;111:209–219.PubMedCrossRefGoogle Scholar
  34. 34.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 1996;36:893–906.PubMedCrossRefGoogle Scholar
  35. 35.
    Mori S, van Zijl PC. Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med 1995;33:41–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 1999;212:770–784.PubMedGoogle Scholar
  37. 37.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–648.PubMedGoogle Scholar
  38. 38.
    Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998;44:584–590.PubMedCrossRefGoogle Scholar
  39. 39.
    Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG, Wedeen VJ, Davis TL, Stakes JW, Caviness VS, Kaplan E, Rosen BR, Pandya DN, Kennedy DN. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol 1997;42:951–962.PubMedCrossRefGoogle Scholar
  40. 40.
    Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45:265–269.PubMedCrossRefGoogle Scholar
  41. 41.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000;44:625–632.PubMedCrossRefGoogle Scholar
  42. 42.
    Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999;96:10422–10427.PubMedCrossRefGoogle Scholar
  43. 43.
    Wiegell MR, Larsson HB, Wedeen VJ. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 2000;217:897–903.PubMedGoogle Scholar
  44. 44.
    Poupon C, Clark CA, Frouin V, Regis J, Bloch I, Le Bihan D, Mangin J. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 2000;12:184–195.PubMedCrossRefGoogle Scholar
  45. 45.
    Poupon C, Mangin J, Clark CA, Frouin V, Regis J, Le Bihan D, Bloch I. Towards inference of human brain connectivity from MR diffusion tensor data. Med Image Anal 2001;5:1–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M, Mori S. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 2001;14:723–735.PubMedCrossRefGoogle Scholar
  47. 47.
    Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PC. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 2002;47:215–223.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein T, Moritz C, Quigley M, Cordes D, Haughton V, Meyerand E. Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. AJNR Am J Neuroradiol 2000;21:1397–1401.PubMedGoogle Scholar
  49. 49.
    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 2000;21:1636–1644.PubMedGoogle Scholar
  50. 50.
    Quigley M, Cordes D, Wendt G, Turski P, Moritz C, Haughton V, Meyerand ME. Effect of focal and nonfocal cerebral lesions on functional connectivity studied with MR imaging. AJNR Am J Neuroradiol. 2001;22:294–300.PubMedGoogle Scholar
  51. 51.
    Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001;22:1326–1333.PubMedGoogle Scholar
  52. 52.
    Holodny AI, Ollenschleger MD, Liu WC, Schulder M, Kalnin AJ. Identification of the corticospinal tracts achieved using blood-oxygen-level-dependent and diffusion functional MR imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001;22:83–88.PubMedGoogle Scholar
  53. 53.
    Flechsig P. Anatomie des menschlichen Gehirns und Rückenmarksauf myelogenetischer Grundlage. Leipzig: Georg Thieme, 1920.Google Scholar
  54. 54.
    Holmes G. Morphological and physiological maturation of the brain in the neonate and young child. J Clin Neurophysiol 1986;3:209–237.PubMedCrossRefGoogle Scholar
  55. 55.
    Yakovlev, P, Lecours I, et al. The myelogenic cycles of regional maturation of the brain. In: Minowski A (ed) Regional Development of the Brain in Early Life. Oxford: Blackwell Scientific, 1967:3–69.Google Scholar
  56. 56.
    Volpe JJ. Neurology of the Newborn. Philadelphia: W.B. Saunders Company, 1995:211–372.Google Scholar
  57. 57.
    van der Knaap MS, Valk J, Bakker CJ, Schooneveld M, Faber JA, Willemse J, Gooskens RH. Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol 1991;33:849–857.PubMedGoogle Scholar
  58. 58.
    Huttenlocher PR. Myelination and the development of function in immature pyramidal tract. Exp Neurol 1970; 29:405–415.PubMedCrossRefGoogle Scholar
  59. 59.
    Kinney H, Brody B, Kloman A, Gilles F. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 1988; 47:217–234.PubMedCrossRefGoogle Scholar
  60. 60.
    Herschkowitz N. Neurological bases of behavioral development in infancy. Brain Dev 2000; 22:411–416.PubMedCrossRefGoogle Scholar
  61. 61.
    Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19:28–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Barkovich, A, Kjos BO, Jackson DE Jr, Norman D. Normal maturation of the neonatal and infant brain: MR Imaging at 1.5 T. Radiology 1988; 166:173–180.PubMedGoogle Scholar
  63. 63.
    Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation — comparison of sequences. AJNR Am J Neuroradiol 1994; 15:425–433.PubMedGoogle Scholar
  64. 64.
    Martin E, Kikinis R, Zuerrer M, Boesch C, Briner J, Kewitz G, Kaelin P. Developmental stages of human brain: an MR study. J Comput Assist Tomogr 1988; 12:917–922.PubMedCrossRefGoogle Scholar
  65. 65.
    Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kaelin P, Boltshauser E, Duc G. MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 1990; 14:685–692.PubMedCrossRefGoogle Scholar
  66. 66.
    Martin E, Krassnitzer S, Kaelin P, Boesch C. MR imaging of the brainstem: normal postnatal development. Neuroradiology 1991; 33:391–395.PubMedCrossRefGoogle Scholar
  67. 67.
    Barkovich AJ. MR of the normal neonatal brain: Assessment of deep structures. AJNR Am J Neuroradiol 1998;19:1397–1403.PubMedGoogle Scholar
  68. 68.
    van der Knaap MS, Valk J. MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 1990; 31:459–470.PubMedCrossRefGoogle Scholar
  69. 69.
    van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader HJ, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996; 200:389–396.PubMedGoogle Scholar
  70. 70.
    Barkovich AJ. Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 2000; 21:1099–1109.PubMedGoogle Scholar
  71. 71.
    Utsunomiya H, Takano K, Okazaki M, Mitsudome A. Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. AJNR Am J Neuroradiol 1999; 20:717–723.PubMedGoogle Scholar
  72. 72.
    Huppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998; 43:224–235.PubMedCrossRefGoogle Scholar
  73. 73.
    Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 1996; 6:551–560 PubMedCrossRefGoogle Scholar
  74. 74.
    Martin E, Grutter R, Boesch C. In vivo NMR spectroscopy: investigation of brain metabolism in neonates and infants. Pediatrie 1990; 45:677–682.PubMedGoogle Scholar
  75. 75.
    Hashimoto T, Tayama M, Miyazaki M, Fujii E, Harada M, Miyoshi H, Tanouchi M, Kuroda Y. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37:398–405.PubMedCrossRefGoogle Scholar
  76. 76.
    Huppi PS, Fusch C, Boesch C, Burri R, Bossi E, Amato M, Herschkowitz N. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995; 37:145–150.PubMedGoogle Scholar
  77. 77.
    Li LM, Cendes F, Bastos AC, Andermann F, Dubeau F, Arnold DL. Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study. Neurology 1998; 50:755–759.PubMedGoogle Scholar
  78. 78.
    van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990;176:509–515.PubMedGoogle Scholar
  79. 79.
    Sakuma H, Nomura Y, Takeda K, Tagami T, Nakagawa T, Tamagawa Y, Ishii Y, Tsukamoto T. Adult and neonatal human brain: diffusional anisotropy and myelination with diffusionweighted MR imaging. Radiology 1991; 180:229–233.PubMedGoogle Scholar
  80. 80.
    Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 1998; 209:57–66.PubMedGoogle Scholar
  81. 81.
    Mukherjee P, Miller JH, Shimony JS Conturo TE, Lee BC, Almli CR, McKinstry RC. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 2001; 221:349–358.PubMedCrossRefGoogle Scholar
  82. 82.
    Hoehn-Berlage M, Eis M, Schmitz B. Regional and directional anisotropy of apparent diffusion coefficient in rat brain. NMR Biomed 1999; 12:45–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J, Moseley ME. Visualization of nonstructural changes in early white matter development on diffusionweighted mr images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 2001; 22:1572–1576.PubMedGoogle Scholar
  84. 84.
    Nedelcu J, Klein MA, Aguzzi A, Boesiger P, Martin E. Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage. Pediatr Res 1999; 46:297–304.PubMedCrossRefGoogle Scholar
  85. 85.
    Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23:794–802.PubMedGoogle Scholar
  86. 86.
    Ito R, Melhem ER, Mori S, Eichler FS, Raymond GV, Moser HW. Diffusion tensor brain MR imaging in X-linked cerebral adrenoleukodystrophy. Neurology 2001; 56:544–547.PubMedGoogle Scholar
  87. 87.
    Eichler FS, Itoh R, Barker PB, Mori S, Garrett ES, van Zijl PC, Moser HW, Raymond GV, Melhem ER. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 2002; 225:245–252.PubMedCrossRefGoogle Scholar
  88. 88.
    Arnold DL, Matthews PM. MRI in the diagnosis and management of multiple sclerosis. Neurology 2002; 58:S23–31.PubMedGoogle Scholar
  89. 89.
    Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M. Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J Neurol 2002; 249:875–883.PubMedCrossRefGoogle Scholar
  90. 90.
    McFarland HF, Barkhof F, Antel J, Miller DH. The role of MRI as a surrogate outcome measure in multiple sclerosis. Mult Scler 2002; 8:40–51.PubMedGoogle Scholar
  91. 91.
    Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, Segev Y, Hendler T, Korczyn AD, Graif M, Cohen Y. High bvalue q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 2002; 47:115–126.PubMedCrossRefGoogle Scholar
  92. 92.
    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K, Wakasa K, Yamada R. The role of diffusionweighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001; 22:1081–1088.PubMedGoogle Scholar
  93. 93.
    Stadnik TW, Chaskis C, Michotte A, Shabana WM, van Rompaey K, Luypaert R, Budinsky L, Jellus V, Osteaux M. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001; 22:969–976.PubMedGoogle Scholar
  94. 94.
    Maier SE, Bogner P, Bajzik G, Mamata H, Mamata Y, Repa I, Jolesz FA, Mulkern RV. Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 2001; 219:842–849.PubMedGoogle Scholar
  95. 95.
    Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002; 20:511–519.PubMedCrossRefGoogle Scholar
  96. 96.
    Yoo SY, Chang KH, Song IC, Han MH, Kwon BJ, Lee SH, Yu IK, Chun CK. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. AJNR Am J Neuroradiol 2002; 23:809–812.PubMedGoogle Scholar
  97. 97.
    Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Thom M, Harkness W, Duncan JS. Diffusion tensor imaging in refractory epilepsy. Lancet 2002; 359:1748–1751.PubMedCrossRefGoogle Scholar
  98. 98.
    Pierpaoli C, Alger JR, Righini A, Mattiello J, Dickerson R, Des Pres D, Barnett A, Di Chiro G. High temporal resolution diffusion MRI of global cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 1996; 16:892–905.PubMedCrossRefGoogle Scholar
  99. 99.
    Wolf RL, Zimmerman RA, Clancy R, Haselgrove JH. Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology 2001; 218:825–833.PubMedGoogle Scholar
  100. 100.
    Rivkin MJ. Hypoxic-ischemic brain injury in the term newborn. Neuropathology, clinical aspects, and neuroimaging. Clin Perinatol 1997; 24:607–625.PubMedGoogle Scholar
  101. 101.
    Robertson RL, Ben-Sira L, Barnes PD, Mulkern RV, Robson CD, Maier SE, Rivkin MJ, du Plessis A. MR line-scan diffusion-weighted imaging of term neonates with perinatal brain ischemia. AJNR Am J Neuroradiol 1999; 20:1658–1670.PubMedGoogle Scholar
  102. 102.
    Barkovich AJ, Westmark KD, Bedi HS, Partridge JC, Ferriero DM, Vigneron DB. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol 2001; 22:1786–1794.PubMedGoogle Scholar
  103. 103.
    Volpe JJ. Human brain development. IN: Volpe JJ (ed) Neurology of the Newborn. Philadelphia: W.B. Saunders Company, 1995:43–92.Google Scholar
  104. 104.
    Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 2001; 49:735–741.PubMedCrossRefGoogle Scholar
  105. 105.
    du Plessis AJ, Johnston MV. Hypoxic-ischemic brain injury in the newborn. Cellular mechanisms and potential strategies for neuroprotection. Clin Perinatol 1997; 24:627–654.PubMedGoogle Scholar
  106. 106.
    Tokumaru AM, Barkovich AJ, O’Uchi T, Matsuo T, Kusano S. The evolution of cerebral blood flow in the developing brain: Evaluation with iodine-123 iodoamphetamine SPECT and correlation with MR imaging. AJNR Am J Neuroradiol 1999; 20:845–852.PubMedGoogle Scholar
  107. 107.
    Chugani H, Phelps M, Mazziotta J. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22:487–497.PubMedCrossRefGoogle Scholar
  108. 108.
    Inder T, Huppi PS, Zientara GP, Maier SE, Jolesz FA, di Salvo D, Robertson R, Barnes PD, Volpe JJ. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 1999; 134:631–634.PubMedCrossRefGoogle Scholar
  109. 109.
    Martin E, Barkovich AJ. Magnetic resonance imaging in perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 1995; 72:F62–70.PubMedCrossRefGoogle Scholar
  110. 110.
    Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, Peebles D, Wylezinska M, Owen-Reece H, Kirkbride V, et al. Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994; 36:699–706.PubMedCrossRefGoogle Scholar
  111. 111.
    Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR. Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2 weighted MRI and spectroscopy. Magn Reson Med 1990; 14:330–346.PubMedCrossRefGoogle Scholar
  112. 112.
    Rumpel H, Ferrini B, Martin E. Lasting cytotoxic edema as an indicator of irreversible brain damage: a case of neonatal stroke. AJNR Am J Neuroradiol 1998; 19:1636–1638.PubMedGoogle Scholar
  113. 113.
    Nedelcu J, Klein MA, Aguzzi A, Martin E. Resuscitative hypothermia protects the neonatal rat brain from hypoxicischemic injury. Brain Pathol 2000; 10:61–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Huppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, Kikinis R, Jolesz FA, Volpe JJ. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 2001; 107:455–460.PubMedCrossRefGoogle Scholar
  115. 115.
    Roy CS, Sherrington CS. J Physiol (Lond) 1890; 11:85–108.PubMedGoogle Scholar
  116. 116.
    Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5:630–639.PubMedGoogle Scholar
  117. 117.
    Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991; 29:231–240.PubMedCrossRefGoogle Scholar
  118. 118.
    Powers WJ, Grubb RL, Raichle ME. Physiological responses to focal cerebral ischemia in humans. Ann Neurol 1984; 16:546–552.PubMedCrossRefGoogle Scholar
  119. 119.
    Zaharchuk G, Mandeville JB, Bogdonov AA Jr, Weisleder R, Rosen BR, Marota JJA. Cerebrovascular dynamics of autoregulation and hypotension: an MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 1999: 30:2197–2203.PubMedGoogle Scholar
  120. 120.
    Sorensen AG, Copen W, Ostergaard L, Buonanno F, Gonzalez R, Rordorf G, Rosen BR, Schwamm L, Weiskoff R, Koroshetz W. Hyperacute stroke: Simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 1999; 210:519–527.PubMedGoogle Scholar
  121. 121.
    Belliveau J, Rosen BR, Kantor H, Rzedzian R, Kennedy D, McKinstry R, Vevea J, Cohen M, Pykett I, Brady T. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 1990; 14:538–546.PubMedCrossRefGoogle Scholar
  122. 122.
    Rosen B, Belliveau J, Buchbinder B, Kwong K, Poorka L, Fisel R, Weiskoff R, Neuder M, Aronnen H, Cohen M, Hopkins A, Brady T. Contrast agents and cerebral hemodynamics. Magn Reson Med 1991; 19:285–292.PubMedCrossRefGoogle Scholar
  123. 123.
    Rosen BR, Belliveau J, Vevea J, Brady T. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990; 14:249–266.PubMedCrossRefGoogle Scholar
  124. 124.
    Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, Chao YS, Wedeen VJ, Brady TJ. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6:164–174.PubMedCrossRefGoogle Scholar
  125. 125.
    Boxerman JL, Hamberg LM, Rosen BR, Weiskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995; 34:555–566.PubMedCrossRefGoogle Scholar
  126. 126.
    Stewart GN. Researches on the circulation time in organs and on the influences which affect it. J Physiol 1893; 15:1–89.PubMedGoogle Scholar
  127. 127.
    Zierler K. Equations for measuring blood flow by external monitoring of radioisotopes. J Appl Physiol 1954; 6:731–744.PubMedGoogle Scholar
  128. 128.
    Meier P, Zierler KL. On the theory of the indicatory dilution method for measurement of blood flow and volume. J Appl Physiol 1954, vol. 6.Google Scholar
  129. 129.
    Weiskoff R, Zuo C, Boxerman J, Rosen B. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 1994; 31:601–610.CrossRefGoogle Scholar
  130. 130.
    Boxerman JL, Rosen BR, Weiskoff RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997; 7:528–537.PubMedCrossRefGoogle Scholar
  131. 131.
    Ogawa S, Lee T, Kay A, Tank D. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 1990; 87:9868–9872.PubMedCrossRefGoogle Scholar
  132. 132.
    Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14:68–78.PubMedCrossRefGoogle Scholar
  133. 133.
    Detre J, Subramanian V, Mitchell M, Smith D, Kobayashi A, Zaman A, Leigh J. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging. Magn Reson Med 1990; 14:389–395.PubMedCrossRefGoogle Scholar
  134. 134.
    Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992; 23:37–45.PubMedCrossRefGoogle Scholar
  135. 135.
    Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 1998; 50:633–641.PubMedGoogle Scholar
  136. 136.
    Williams D, Detre J, Leigh J, Koretsky A. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 1992; 89:212–216.PubMedCrossRefGoogle Scholar
  137. 137.
    Edelman R, Siewert B, Darby D, Thangaraj V, Nobre A, Mesulam M, Warach S. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994; 192:513–520.PubMedGoogle Scholar
  138. 138.
    Edelman RR, Chen Q. EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 1998; 40:800–805.PubMedCrossRefGoogle Scholar
  139. 139.
    Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10:237–249.PubMedCrossRefGoogle Scholar
  140. 140.
    Kim SG. Quantification of regional cerebral blood flow change by flow sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34:293–301.PubMedCrossRefGoogle Scholar
  141. 141.
    Kim SG, Tsekos NV, Ashe J. Multi-slice perfusion-based functional MRI using the FAIR technique: comparison of CBF and BOLD effects. NMR Biomed 1997; 10:191–196.PubMedCrossRefGoogle Scholar
  142. 142.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Seperation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168:497–505.PubMedGoogle Scholar
  143. 143.
    Ball WS. Cerebrovascular occlusive disease in childhood. Neuroimaging Clin N Am 1994; 4:393–421.PubMedGoogle Scholar
  144. 144.
    Broderick J, Talbot GT, Prenger EC, Leach A, Brott T. Stroke in children within a major metropolitan area-the surprising importance of intracerebral hemorrhage. J Child Neurol 1993; 8:250–255.PubMedCrossRefGoogle Scholar
  145. 145.
    Ball WS, Holland SK. Perfusion imaging in the pediatric patient MRI Clin North Am 2001; 9:207–230.Google Scholar
  146. 146.
    Takahashi T, Shirane R, Sato S, Yoshimoto T. Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 1999; 20:917–922.PubMedGoogle Scholar
  147. 147.
    Craigie EH. Changes in the vascularity in the brain stem and cerebellum of the albino rat between birth and maturity. J Comp Neurol 1924; 38:27–48.CrossRefGoogle Scholar
  148. 148.
    Kennedy C, Grave GD, Jehle JW, Sokoloff L. Blood flow to white matter during maturation of the brain. Neurology 1970; 20:613–618.PubMedGoogle Scholar
  149. 149.
    Kennedy C, Grave GD, Jehle JW, Sokoloff L. Changes in blood flow in the component structures of the dog brain during postnatal maturation. J Neurochem 1972; 19:2423–2433.PubMedCrossRefGoogle Scholar
  150. 150.
    Kaufmann AM, Firlik AK, Fukui MB, Wechsler LR, Jungries CA, Yonas H. Ischemic core and penumbra in human stroke. Stroke 1999; 30:93–99.PubMedGoogle Scholar
  151. 151.
    Gonzalez RG, Schaefer PW, Buonanno FS, Shwamm LH, Budzik RF, Rordorf G, Wang B, Sorensen AG, Koroshetz WJ. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 h of stroke symptom onset. Radiology 1999; 210:155–162.PubMedGoogle Scholar
  152. 152.
    Provenzale JM, Sorensen AG, Yuh WTC. Contemporary stroke imaging: early diagnosis, Triage, and Treatment. RSNA categorical course in diagnostic radiology: Neuroradiology 2000; 7–25.Google Scholar
  153. 153.
    Davis R, Bulkley G, Traystman R. Role of oxygen free radicals in focal brain ischemia. In: Tomita M, Sawada T, Naritomi H, Weiss WD (eds) Cerebral Hyperemia and Ischemia: from the Standpoint of Cerebral Blood Volume. Amsterdam: Excerpta Medica, 1988:151–156.Google Scholar
  154. 154.
    Keller E, Flacke S, Urbach H. Diffusion-and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke 1999; 30:1144–1149.PubMedGoogle Scholar
  155. 155.
    Tzika AA, Robertson RL, Barnes PD, Vajapeyam S, Burrows PE, Treves ST, Scott RM. Childhood moyamoya disease: hemodynamic MRI. Pediatr Radiol 1997; 27:727–735.PubMedCrossRefGoogle Scholar
  156. 156.
    Tsuchiya K, Inaoka S, Mitzutani Y, Hachiya J. Echo-planar perfusion MR of moyamoya disease. AJNR Am J Neuroradiol 1998; 19:211–216.PubMedGoogle Scholar
  157. 157.
    Aronen H, Gazit I, Louis D, Buchbinder B, Pardo F, Weiskoff R, Harsh G, Cosgrove G, Halpern E, Hochberg F, Rosen B. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191:41–51.PubMedGoogle Scholar
  158. 158.
    Folkman J. Tumor angiogenesis: therapeutic implications N Engl J Med 1971; 285:1182–1186.PubMedCrossRefGoogle Scholar
  159. 159.
    Folkman J, Klagsbrun M. Angiogenetic factors. Science 1987; 235:442–447.PubMedCrossRefGoogle Scholar
  160. 160.
    Langworthy O. Development of behavior patterns and myelinization of the nervous system in the human fetus and infant. Contrib Embryol Carnegie Inst 1933; 24:3–57.Google Scholar
  161. 161.
    Geschwind N, Levitsky W. Human brain: left-right asymmetries in temporal speech region. Science 1968; 161:186–187.PubMedCrossRefGoogle Scholar
  162. 162.
    Gauger LM, Lombardino LJ, Leonard CM. Brain morphology in children with specific language impairment. J Speech Lang Hear Res 1997; 40:1272–1284.PubMedGoogle Scholar
  163. 163.
    Seldon HL. Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 1981; 229:295–310.PubMedCrossRefGoogle Scholar
  164. 164.
    Yousry TA, Schmid UD, Jassoy AG, Schmidt D, Eisner WE, Reulen HJ, Reiser MF, Lissner J. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 1995; 195:23–29.PubMedGoogle Scholar
  165. 165.
    Galaburda AM, Geschwind N. Anatomical asymmetries in the adult and developing brain and their implications for function. Adv Pediatr 1981; 28:271–292.PubMedGoogle Scholar
  166. 166.
    Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, Kaysen D, Krain AL, Ritchie GF, Rajapakse JC, Rapoport JL. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiat 1996; 53:607–616.PubMedGoogle Scholar
  167. 167.
    Martin E, Marcar V. Functional MR imaging in pediatrics. In: Barkovich A (ed) Pediatric MR Neuroimaging, vol. 9:2001:231–245.Google Scholar
  168. 168.
    Kwong K, Belliveau J, Chesler D, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89:5675–5679.PubMedCrossRefGoogle Scholar
  169. 169.
    Ogawa S, Tank D, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci 1992; 89:5951–5955.PubMedCrossRefGoogle Scholar
  170. 170.
    Martin E, Thiel T, Joeri P, Loenneker T, Ekatodramis D, Huisman T, Hennig J, Marcar VL. Effect of pentobarbital on visual processing in man. Hum Brain Mapp 2000;10:132–139.PubMedCrossRefGoogle Scholar
  171. 171.
    Martin E, Joeri P, Loenneker T, Ekatodramis D, Vitacco D, Hennig J, Marcar VL. Visual processing in infants and children studied using functional MRI. Pediatr Res 1999; 46:135–140.PubMedCrossRefGoogle Scholar
  172. 172.
    Souweidane MM, Kim KH, McDowall R, Ruge MI, Lis E, Krol G, Hirsch J. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg 1999; 30:86–92.PubMedCrossRefGoogle Scholar
  173. 173.
    Yamada H, Sadato N, Konishi Y, Muramoto S, Kimura K, Tanaka M, Yonekura Y, Ishii Y, Itoh H. A milestone for normal development of the infantile brain detected by functional MRI. Neurology 2000; 55:218–223.PubMedGoogle Scholar
  174. 174.
    O’Tuama LA, Dickstein DP, Neeper R, Gascon GG. Functional brain imaging in neuropsychiatric disorders of childhood. J Child Neurol 1999;14:207–221.PubMedCrossRefGoogle Scholar
  175. 175.
    Born AP, Rostrup E, Miranda MJ, Larsson HB, Lou HC. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 2002; 20:199–205.PubMedCrossRefGoogle Scholar
  176. 176.
    Marcar VL, Girard F, Rinkel Y, Schneider JF, Martin E. Inaudible functional MRI using a truly mute gradient echo sequence. Neuroradiology 2002; 44:893–899.PubMedCrossRefGoogle Scholar
  177. 177.
    Talairach J, Tournoux P. Co-planar Stereotactic Atlas ot the Human Brain. New York: Thieme, 1988.Google Scholar
  178. 178.
    Chugani H, Phelps M. Maturational changes in cerebral function in infants determined by 18-FDG positron emission tomography. Science 1986; 231:840–843PubMedCrossRefGoogle Scholar
  179. 179.
    Meek JH, Firbank M, Elwell CE, Atkinson J, Braddick O, Wyatt JS. Regional hemodynamic responses to visual stimulation in awake infants. Pediatr Res 1998; 43:840–843.PubMedCrossRefGoogle Scholar
  180. 180.
    Schneider G. Two visual systems. Science 1969; 163:895–902.PubMedCrossRefGoogle Scholar
  181. 181.
    Bronson G. The postnatal growth of visual capacity. Child Dev 1974; 45:873–890.PubMedCrossRefGoogle Scholar
  182. 182.
    Dubowitz L, Mushin J, De Vries L, Arden G. Visual function in the newborn infant: is it cortically mediated? Lancet 1986; 1:1139–1141.PubMedCrossRefGoogle Scholar
  183. 183.
    Riddoch G. Dissociation of visual perception due to occipital injuries, with especial reference to appreciation of movement. Brain 1917; 40:15–57.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ernst Martin-Fiori
    • 1
  • Thierry A. G. M. Huisman
    • 2
  1. 1.Neuroradiology & Magnetic Resonance, Department of Diagnostic ImagingUniversity Children’s HospitalZurichSwitzerland
  2. 2.Department of Diagnostic Imaging Radiology and NeuroradiologyUniversity Children’s Hospital ZurichZurichSwitzerland

Personalised recommendations