MR Spectroscopy

  • Petra S. Hüppi
  • François Lazeyras


From the basic principles of magnetic resonance imaging (MRI) we are familiar with the measurement of the net magnetization of nuclei that are placed in a magnetic field (B0) and excited by a short radiofrequency (RF) pulse exactly in resonance with their precession, such that the resonant signal can be observed. These observed resonant signals vary slightly depending on the location of nuclei within different molecules, as protons in molecules also experience an additional magnetic field arising from interactions with electrons and other surrounding nuclei.


Traumatic Brain Injury Magnetic Resonance Spectroscopy Temporal Lobe Epilepsy Proton Magnetic Resonance Spectroscopy Chemical Shift Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aue WP. Non-invasive localized NMR spectroscopy in vivo: volume selective excitation. Ann N Y Acad Sci 1987;508:360–365.PubMedCrossRefGoogle Scholar
  2. 2.
    Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. Localized high-resolution proton NMR Spectroscopy using stimulated echoes:initial applications to human brain in vivo. Magn Reson Med 1989;9:79–93.PubMedCrossRefGoogle Scholar
  3. 3.
    Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333–348.PubMedCrossRefGoogle Scholar
  4. 4.
    Ordidge RJ, Bowley RM, McHale G. A general approach to selection of multiple cubic volume elements using the ISIS technique. Magn Reson Med 1988;8:323–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 1982;79:3523–3526.PubMedCrossRefGoogle Scholar
  6. 6.
    Young IR, Charles HC. MR Spectroscopy. Clinical Applications and Techniques. London: Martin Dunitz, 1996.Google Scholar
  7. 7.
    Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 2001;31:269–286.PubMedCrossRefGoogle Scholar
  8. 8.
    Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993;30:672–679.PubMedCrossRefGoogle Scholar
  9. 9.
    Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 2001;14:260–264.PubMedCrossRefGoogle Scholar
  10. 10.
    Alger JR, Symko SC, Bizzi A, Posse S, DesPres DJ, Armstrong MR. Absolute quantitation of short TE brain 1H-MR spectra and spectroscopic imaging data. J Comput Assist Tomogr 1993;17:191–199.PubMedCrossRefGoogle Scholar
  11. 11.
    Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. Part II metabolite concentrations. J Magn Reson 1993;102:9–19.CrossRefGoogle Scholar
  12. 12.
    Azzopardi D, Wyatt JS, Hamilton PA, Cady EB, Delpy DT, Hope PL, Reynolds EO. Phosphorus metabolites and intracellular pH in the brains of normal and small-for-gestational age infants investigated by magnetic resonance spectroscopy. Pediatr Res 1989;25:440–444.PubMedCrossRefGoogle Scholar
  13. 13.
    Laptook AR, Corbett RJ, Uauy R, Mize C, Mendelsohn D, Nunnally RL. Use of 31P magnetic resonance spectroscopy to characterize evolving brain damage after perinatal asphyxia. Neurology 1989;39:709–712.PubMedGoogle Scholar
  14. 14.
    Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci 1992;89:1109–1112.PubMedCrossRefGoogle Scholar
  15. 15.
    Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors and immature oligodendrocytes in vitro. J Neurochem 1992;59:55–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Cady EB, Penrice J, Amess PN, Lorek A, Wylezinska M, Aldridge RF, Franconi F, Wyatt JS, Reynolds EO. Lactate, N-acetylaspartate, choline and creatine concentrations and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996;36:878–886.PubMedCrossRefGoogle Scholar
  17. 17.
    Hüppi PS, Posse S, Lazeyras F, Burri R, Bossi E, Herschkowitz N. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 1991;30:574–578.PubMedGoogle Scholar
  18. 18.
    Hüppi PS, Fusch C, Boesch C, Burri R, Bossi E, Amato M, Herschkowitz N. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995;37:145–150.PubMedGoogle Scholar
  19. 19.
    Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:1–14.CrossRefGoogle Scholar
  20. 20.
    van der Knaap MS, van-der-Grond J, van-Rijen PC, Faber JA, Valk J, Willemse K. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990;176:509–515.PubMedGoogle Scholar
  21. 21.
    Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, Stewart A, Wyatt JS, Reynolds EO. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 1996;40:6–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Peden CJ, Cowan FM, Bryant DJ, Sargentoni J, Cox IJ, Menon DK, Gadian DG, Bell JD, Dubowitz LM. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 1990;14:886–894.PubMedCrossRefGoogle Scholar
  23. 23.
    Kreis R, Ross BD, Farrow NA, Ackerman Z. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with 1H-MR spectroscopy. Radiology 1992;182:19–27.PubMedGoogle Scholar
  24. 24.
    Kreis R, Arcinue E, Ernst T, Shonk TK, Flores R, Ross BD. Hypoxic encephalopathy after near-drowning studied by quantitative 1H-magnetic resonance spectroscopy. J Clin Invest 1996;97:1142–1154.PubMedCrossRefGoogle Scholar
  25. 25.
    Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993;15:289–298.PubMedCrossRefGoogle Scholar
  26. 26.
    Brand A, Leibfritz D, Hamprecht B, Dringen R. Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. J Neurochem 1998;71:827–832.PubMedGoogle Scholar
  27. 27.
    Strange K, Emma F, Paredes A, Morrison R. Osmoregulatory changes in myo-inositol content and Na+/myoinositol cotransport in rat cortical astrocytes. Glia 1994;12:35–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Magnusson K. Distributions of taurine, glutamate, and glutamate receptors during postnatal development and plasticity in the rat brain. Adv Exp Med Biol 1996;403:434–44.Google Scholar
  29. 29.
    Huxtable R. Insights on function: metabolism and pharmacology of taurine on the brain. In: Lombardini J, Kenny A (eds) The Role of Peptides and Amino Acids as Neurotransmitters. New York: Liss, 1981:53–97.Google Scholar
  30. 30.
    Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A. Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 1998;70:835–840.PubMedCrossRefGoogle Scholar
  31. 31.
    Burri R, Steffen C, Herschkowitz N. N-acetyl-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. J Neurosci 1991;13:403–411.Google Scholar
  32. 32.
    Mehta V, Namboodiri MA. N-acetyl-aspartate as an acetyl source in the nervous system. Brain Res Mol Brain Res 1995;31:151–157.PubMedCrossRefGoogle Scholar
  33. 33.
    Hüppi PS, Kreis R, Zientara G, Holling E, Maier S, Boesch C, et al. Regional maturation of the human brain assessed by 1H-MRS and diffusion tensor imaging. Effects of prematurity and ischemic injury. International Society for Magnetic Resonance in Medicine, 1998; vol. I: 94.Google Scholar
  34. 34.
    Berridge MJ. Cell signalling through phospholipid metabolism. J Cell Sci Suppl 1986;4:137–153.PubMedGoogle Scholar
  35. 35.
    Kato N. Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci 1993;90:3650–3654.PubMedCrossRefGoogle Scholar
  36. 36.
    Burri R, Lazeyras F, Aue WP, Straehl P, Bigler P, Althaus U, Herschkowitz N. Correlation between 31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain. Dev Neurosci 1988;10:213–221.PubMedCrossRefGoogle Scholar
  37. 37.
    Boesch C, Gruetter R, Martin E, Duc G, Wüthrich K. Variations in the in vivo 31P magnetic resonance spectra of the developing human brain during postnatal life. Radiology 1989;172:197–199.PubMedGoogle Scholar
  38. 38.
    Buchli R, Martin E, Boesiger P, Rumpel H. Developmental changes of phosphorus metabolite concentrations in the human brain: a 31Pmagnetic resonance spectroscopy study in vivo. Pediatr Res 1994;35:431–435.PubMedCrossRefGoogle Scholar
  39. 39.
    Volpe J. Neurology of the Newborn, 4th edn. Philadelphia: Saunders, 2001.Google Scholar
  40. 40.
    Kinney H, Karthigasan J, Borensteyn NI, Flax JD, Kirschner DA. Myelination in the developing human brain: biochemical correlates. Neurochem Res 1994;19:983–996.PubMedCrossRefGoogle Scholar
  41. 41.
    Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002;48:949–958.PubMedCrossRefGoogle Scholar
  42. 42.
    Younkin DP, Delivoria-Papadopoulos M, Leonard JC, Subramanian VH, Eleff S, Leigh JS Jr, Chance B. Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonanCe spectroscopy. Ann Neurol 1984;16:581–586.PubMedCrossRefGoogle Scholar
  43. 43.
    Hope PL, Costello AM, Cady EB, Delpy DT, Tofts PS, Chu A, Hamilton PA, Reynolds EO, Wilkie DR. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth asphyxiated infants. Lancet 1984;2:366–370.PubMedCrossRefGoogle Scholar
  44. 44.
    Cady EB. Phosphorus and proton magnetic resonance spectroscopy of the brain of the newborn human infant. In: Bachelard H (ed) Magnetic Resonance Spectroscopy and Imaging in Neurochemistry. New York: Plenum Press, 1997:289–327.Google Scholar
  45. 45.
    Chugani HT, Hovda DA, Villablanca JR, Phelps ME, Xu WF. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab 1991;11:35–47.PubMedGoogle Scholar
  46. 46.
    Cady Eb, Wylezinska M, Penrice J, Lorek A, Amess P. Quantitation of phosphorus metabolites in newborn human brain using internal water as reference standard. Magn Res Imag. 1996;14:293–304.CrossRefGoogle Scholar
  47. 47.
    Holtzman D, Togliatti A, Khait I, Jensen F. Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr Res 1998;44:410–418.PubMedCrossRefGoogle Scholar
  48. 48.
    Vannucci RC, Yager JY. Perinatal brain metabolism. In: Polin RA, Fox WW (eds) Fetal and Neonatal Physiology, 2nd edN. Philadelphia: Saunders, 1998:2123–2137.Google Scholar
  49. 49.
    Vannucci RC, Yager JY. Glucose, lactic acid, and perinatal hypoxic-ischemic brain damage. Pediatr Neurol 1992;8:3–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Cross JH, Gadian DG, Connelly A, Leonard JV. Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. J Inher Metab Dis 1993;16:800–811.PubMedCrossRefGoogle Scholar
  51. 51.
    Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 1998;20:291–299.PubMedCrossRefGoogle Scholar
  52. 52.
    Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 1994;91:10625–10629.PubMedCrossRefGoogle Scholar
  53. 53.
    Pellerin L, Pellegri G, Martin JL, Magistretti PJ. Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. the adult brain. Proc Natl Acad Sci USA 1998;95:3990–3995.PubMedCrossRefGoogle Scholar
  54. 54.
    Leth H, Toft PD, Pryds O, Peitersen B, Lou HC, Henriksen O. Brain lactate in preterm and growth-retarded neonates. Acta Paediatr 1995;84:495–499.PubMedCrossRefGoogle Scholar
  55. 55.
    Gruetter R, Seaquist ER, Ugurbil K. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 2001;281:E100–E112.PubMedGoogle Scholar
  56. 56.
    Hüppi PS, Schuknecht B, Boesch C, Bossi E, Felblinger J, Fusch C, Herschkowitz N. Structural and neurobehavioral delay in postnatal brain development in preterm infants. Pediatr Res 1996;39:1–7.CrossRefGoogle Scholar
  57. 57.
    Pouwels PJ, Brockman K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infanty to adulehood as detected by quantitative localized proton MRS. Pediatr Res 1999;46:474–485.PubMedCrossRefGoogle Scholar
  58. 58.
    Vigneron DB, Barkovich AJ, Noworolski SM, von dem Bussche M, Henry RG, Lu Y, Partridge JC, Gregory G, Ferriero DM. Three-dimensional proton MR spectroscopic imaging of premature and term neonates. AJNR Am J Neuroradiol 2001;22:1424–1433.PubMedGoogle Scholar
  59. 59.
    Groenendaal F, Veehoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS. Cerebral lactate and N-acetylaspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 1994;35:148–151.PubMedCrossRefGoogle Scholar
  60. 60.
    Hüppi PS. Advances in postnatal neuroimaging: relevance to pathogenesis and treatment of brain injury. Clin Perinatol 2002;29:827–856.PubMedCrossRefGoogle Scholar
  61. 61.
    Hanrahan JD, Cox IJ, Azzopardi D, Cowan FM, Sargentoni J, Bell JD, Bryant DJ, Edwards AD. Relation between proton magnetic resonance spectroscopy within 18 h of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 1999;41:76–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Hanrahan JD, Cox IJ, Edwards AD, Cowan FM, Sargentoni J, Bell JD, Bryant DJ, Rutherford MA, Azzopardi D. Persistent increases in cerebral lactate concentration after birth asphyxia. Pediatr Res 1998;44:304–311.PubMedCrossRefGoogle Scholar
  63. 63.
    Robertson NJ, Cowan FM, Cox IJ, Edwards AD. Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 2002;52:732–742.PubMedCrossRefGoogle Scholar
  64. 64.
    Peden CJ, Rutherford MA, Sargentoni J, Cox IJ, Bryant DJ, Dubowitz LM. Proton spectroscopy of the neonatal brain following hypoxic-ischemic injury. Dev Med Child Neurol 1993;34:285–295.Google Scholar
  65. 65.
    Shu SK, Ashwal S, Holshouser BA, Nystrom G, Hinshaw DB Jr. Prognostic value of 1H-MRS in perinatal CNS insults. Pediatr Neurol 1997;17:309–318.PubMedCrossRefGoogle Scholar
  66. 66.
    Robertson NJ, Cox IJ, Cowan FM, Counsell SJ, Azzopardi D, Edwards AD. Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 1999;46:287–296.PubMedCrossRefGoogle Scholar
  67. 67.
    Cady EB. Metabolite concentrations and relaxation in perinatal hypoxic-ischemic injury. Neurochem Res 1996;21:1043–1052.PubMedCrossRefGoogle Scholar
  68. 68.
    Hüppi, PS, Zientara G, Hofmann L, Kreis R, Boesch C, Jolesz FA, Volpe JJ. Quantitative 1H-MRS in early human brain development and metabolic changes after perinatal brain injury. 8, 590. 2000. Denver. Ref Type: Conference ProceedingGoogle Scholar
  69. 69.
    Groenendaal F, Roelants-Van Rijn AM, van Der GJ, Toet MC, de Vries LS. Glutamate in cerebral tissue of asphyxiated neonates during the first week of life demonstrated in vivo using proton magnetic resonance spectroscopy. Biol Neonate 2001;79:254–257.PubMedCrossRefGoogle Scholar
  70. 70.
    Robertson NJ, Lewis RH, Cowan FM, Allsop JM, Counsell SJ, Edwards AD, Cox IJ. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 2001;50:692–700.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee JH, Arcinue E, Ross BD. Brief report: organic osmolytes in the brain of an infant with hypernatremia. N Engl J Med 1994;331:439–442.PubMedCrossRefGoogle Scholar
  72. 72.
    Robertson NJ, Kuint J, Counsell TJ, Rutherford TA, Coutts A, Cox IJ, Edwards AD. Characterization of cerebral white matter damage in the preterm infant using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2000;20:1446–1456.PubMedCrossRefGoogle Scholar
  73. 73.
    Graham GD, Hwang JH, Rothman DL, Prichard JW. Spectroscopic assessment of alterations in macromolecule and small-molecule metabolites in human brain after stroke. Stroke 2001;32:2797–2802.PubMedCrossRefGoogle Scholar
  74. 74.
    Blankenberg FG, Storrs RW, Naumovski L, Goralski T, Spielman D. Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 1996;87:1951–1956.PubMedGoogle Scholar
  75. 75.
    Vannucci RC, Vannucci SJ. Hypoglycemic brain injury. Semin Neonatol 2001;6:147–155.PubMedCrossRefGoogle Scholar
  76. 76.
    Ouyang YB, He QP, Li PA, Janelidze S, Wang GX, Siesjo BK. Is neuronal injury caused by hypoglycemic coma of the necrotic or apoptotic type? Neurochem Res 2000;25:661–667.PubMedCrossRefGoogle Scholar
  77. 77.
    McGowan JE, Zanelli SA, Haynes-Laing AG, Mishra OP, Delivoria-Papadopoulos M. Modification of glutamate binding sites in newborn brain during hypoglycemia. Brain Res 2002;927:80–86.PubMedCrossRefGoogle Scholar
  78. 78.
    Barkovich AJ, Ali FA, Rowley HA, Bass N. Imaging patterns of neonatal hypoglycemia. AJNR Am J Neuroradiol 1998;19:523–528.PubMedGoogle Scholar
  79. 79.
    Raybaud C, Guye M, Mancini J, Girard N. Neuroimaging of epilepsy in children. Magn Reson Imaging Clin N Am 2001;9:121–147.PubMedGoogle Scholar
  80. 80.
    Engel J Jr. Surgical Treatment of the Epilepsies, 2nd edn. New York: Raven Press, 1993.Google Scholar
  81. 81.
    Gadian DG, Isaacs EB, Cross JH, Connelly A, Jackson GD, King MD, Neville BG, Vargha-Khadem F. Lateralization of brain function in childhood revealed by magnetic resonance spectroscopy. Neurology 1996;46:974–977.PubMedGoogle Scholar
  82. 82.
    Hugg JW, Laxer KD, Matson GB, Maudsley AA, Weiner MW. Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1993;34:788–794.PubMedCrossRefGoogle Scholar
  83. 83.
    Matthews PM, Andermann F, Arnold DL. A proton magnetic resonance spectroscopy study of focal epilepsy in humans. Neurology 1990;40:985–989.PubMedGoogle Scholar
  84. 84.
    Connelly A, Van Paesschen W, Porter DA, Johnson CL, Duncan JS, Gadian DG. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology 1998;51:61–66.PubMedGoogle Scholar
  85. 85.
    Cross JH, Connelly A, Jackson GD, Johnson CL, Neville BG, Gadian DG. Proton magnetic resonance spectroscopy in children with temporal lobe epilepsy. Ann Neurol 1996;39:107–113.PubMedCrossRefGoogle Scholar
  86. 86.
    Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Fraught RE, Hetherington HP. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol 1996;40:236–239.PubMedCrossRefGoogle Scholar
  87. 87.
    Knowlton RC, Laxer KD, Ende G, Hawkins RA, Wong ST, Matson GB, Rowley HA, Fein G, Weiner MW. Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 1997;42:829–837.PubMedCrossRefGoogle Scholar
  88. 88.
    Margerison JH, Corsellis JA. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 1966;89:499–530.PubMedCrossRefGoogle Scholar
  89. 89.
    Stanley JA, Cendes F, Dubeau F, Andermann F, Arnold DL. Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 1998;39:267–273.PubMedCrossRefGoogle Scholar
  90. 90.
    Kikuchi S, Kubota F, Akata T, Shibata N, Hattori S, Oya N, Takahashi A. A study of the relationship between the seizure focus and 1H-MRS in temporal lobe epilepsy and frontal lobe epilepsy. Psychiatry Clin Neurosci 2000;54:455–459.PubMedCrossRefGoogle Scholar
  91. 91.
    Miller SP, Li LM, Cendes F, Tasch E, Andermann F, Dubeau F, Arnold DL. Medial temporal lobe neuronal damage in temporal and extratemporal lesional epilepsy. Neurology 2000;54:1465–1470.PubMedGoogle Scholar
  92. 92.
    Li LM, Cendes F, Andermann F, Dubeau F, Arnold DL. Spatial extent of neuronal metabolic dysfunction measured by proton MR spectroscopic imaging in patients with localization-related epilepsy. Epilepsia 2000;41:666–674.PubMedCrossRefGoogle Scholar
  93. 93.
    Lazeyras F, Blanke O, Zimine I, Delavelle J, Perrig SH, Seeck M. MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. Neurology 2000;55:1677–1682.PubMedGoogle Scholar
  94. 94.
    Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, Delavelle J, Golay X, Haenggeli CA, de Tribolet N, Landis T. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol 1998;106:508–512.PubMedCrossRefGoogle Scholar
  95. 95.
    Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, Duncan JS, Fish DR. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 1999;122:1679–1688.PubMedCrossRefGoogle Scholar
  96. 96.
    Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J, Michel CM, de Tribolet N, Villemure JG, Seeck M. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 2000;12:177–185.PubMedCrossRefGoogle Scholar
  97. 97.
    Schomer DL, Bonmassar G, Lazeyras F, Seeck M, Blum A, Anami K, Schwartz D, Belliveau JW, Ives J. EEG-Linked functional magnetic resonance imaging in epilepsy and cognitive neurophysiology. J Clin Neurophysiol 2000;17:43–58.PubMedCrossRefGoogle Scholar
  98. 98.
    Detre JA, Wang ZY, Bogdan AR, Gusnard DA, Bay CA, Bingham PM, Zimmerman RA. Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy. Ann Neurol 1991;29:218–221.PubMedCrossRefGoogle Scholar
  99. 99.
    Duncan DB, Herholz K, Kugel H, Roth B, Ruitenbeek W, Heindel W, Wienhard K, Heiss WD. Positron emission tomography and magnetic resonance spectroscopy of cerebral glycolysis in children with congenital lactic acidosis. Ann Neurol 1995;37:351–358.PubMedCrossRefGoogle Scholar
  100. 100.
    Eleff SM, Barker PB, Blackband SJ, Chatham JC, Lutz NW, Johns DR, Bryan RN, et al. Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Ann Neurol 1990;27:626–630.PubMedCrossRefGoogle Scholar
  101. 101.
    De Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology 1995;45:1193–1198.PubMedGoogle Scholar
  102. 102.
    Pavlakis SG, Kingsley PB, Kaplan GP, Stacpoole PW, O’Shea M, Lustbader D. Magnetic resonance spectroscopy: use in monitoring MELAS treatment. Arch Neurol 1998;55:849–852.PubMedCrossRefGoogle Scholar
  103. 103.
    Heindel W, Kugel H, Roth B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. AJNR Am J Neuroradiol 1993;14:629–635.PubMedGoogle Scholar
  104. 104.
    Gabis L, Parton P, Roche P, Lenn N, Tudorica A, Huang W. In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging 2001;11:209–211.PubMedCrossRefGoogle Scholar
  105. 105.
    Grodd W, Krageloh-Mann I, Peterson D, Trefz FK, Harzer K. In vivo assessment of N-acetylaspartate in brain in spongy degenartion (Canavan’s disease) by proton spectroscopy. Lancet 1990;2:437–438.CrossRefGoogle Scholar
  106. 106.
    Gadian DG, Connelly A, Cross JH, Bruns S, Iles RA, Leonard JV. 1H spectroscopy in two children with ornithine transcarbamylase deficiency. 1, 193. 1991. San Francisco. Ref Type: Conference Proceeding.Google Scholar
  107. 107.
    Novotny EJ Jr, Avison MJ, Herschkowitz N, Petroff OA, Prichard JW, Seashore MR, Rothman DL. In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spe ctroscopy. Pediatr Res 1995;37:244–249.PubMedCrossRefGoogle Scholar
  108. 108.
    Kreis R, Pietz J, Penzien J, Herschkowitz N, Boesch C. Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic resonance spectroscopy. J Magn Reson B 1995;107:242–251.PubMedCrossRefGoogle Scholar
  109. 109.
    Chien YH, Peng SF, Wang TR, Hwu WL. Cranial MR spectroscopy of tetrahydrobiopterin deficiency. AJNR Am J Neuroradiol 2002;23:1055–1058.PubMedGoogle Scholar
  110. 110.
    Tzika AA, Ball WS Jr, Vigneron DB, Dunn RS, Nelson SJ, Kirks DR. Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology 1993;189:467–480.PubMedGoogle Scholar
  111. 111.
    Bruhn H, Kruse B, Korenke GC, Hanefeld F, Hanicke W, Merboldt KD, Frahm J. Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 1992;16:335–344.PubMedCrossRefGoogle Scholar
  112. 112.
    Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 1998;29:254–264.PubMedCrossRefGoogle Scholar
  113. 113.
    Spalice A, Popolizio T, Parisi P, Scarabino T, Iannetti P. Proton MR spectroscopy in connatal Pelizaeus-Merzbacher disease. Pediatr Radiol 2000;30:171–175.PubMedCrossRefGoogle Scholar
  114. 114.
    Takahashi Y, Sukegawa K, Aoki M, Ito A, Suzuki K, Sakaguchi H, Watanabe M, Isogai K, Mizuno S, Hoshi H, Kuwata K, Tomatsu S, Kato S, Ito T, Kondo N, Orii T. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res 2001;49:349–355.PubMedCrossRefGoogle Scholar
  115. 115.
    Ives NK, Bolas NM, Gardiner RM. The effects of bilirubin on brain energy metabolism during hyperosmolar opening of the blodd-brain barrier: an in vivo study using 31P nuclear magnetic resonance spectroscopy. Pediatr Res 1989;26:356–361.PubMedCrossRefGoogle Scholar
  116. 116.
    Leuzzi V. Inborn errors of creatine metabolism and epilepsy: clinical features, diagnosis, and treatment. J Child Neurol 2002;17(Suppl 3):3S89–97.PubMedGoogle Scholar
  117. 117.
    Salomons GS, van Dooren SJ, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 2001;68:1497–1500.PubMedCrossRefGoogle Scholar
  118. 118.
    Stockler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hanicke W, Frahm J. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994;36:409–413.PubMedGoogle Scholar
  119. 119.
    Arle JE, Morriss C, Wang ZJ, Zimmerman RA, Phillips PG, Sutton LN. Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. J Neurosurg 1997;86:755–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Wang Z, Sutton LN, Cnaan A, Haselgrove JC, Rorke LB, Zhao H, Bilaniuk LT, Zimmerman RA. Proton MR spectroscopy of pediatric cerebellar tumors. AJNR Am J Neuroradiol 1995;16:1821–1833.PubMedGoogle Scholar
  121. 121.
    Hunter JV, Wang ZJ. MR spectroscopy in pediatric neuroradiology. Magn Reson Imaging Clin N Am 2001;9:165–189.PubMedGoogle Scholar
  122. 122.
    Lazareff JA, Bockhorst KH, Curran J, Olmstead C, Alger JR. Pediatric low-grade gliomas: prognosis with proton magnetic resonance spectroscopic imaging. Neurosurgery 1998;43:809–817.PubMedCrossRefGoogle Scholar
  123. 123.
    Majos C, Alonso J, Aguilera C, Serrallonga M, Acebes JJ, Arus C, Gili J. Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 2002;225:556–566.PubMedCrossRefGoogle Scholar
  124. 124.
    Ono J, Yamaura A, Kubota M, Okimura Y, Isobe K. Outcome prediction in severe head injury: analyses of clinical prognostic factors. J Clin Neurosci 2001;8:120–123.PubMedCrossRefGoogle Scholar
  125. 125.
    Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, Bluml S, Shonk T, Mandigo JC, Caton W, Clark C, Jensen SW, Lehman NL, Arcinue E, Pudenz R, Shelden CH. 1H MRS in acute traumatic brain injury. J Magn Reson Imaging 1998;8:829–840.PubMedCrossRefGoogle Scholar
  126. 126.
    Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA. Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 1999;52:1384–1391.PubMedGoogle Scholar
  127. 127.
    Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 2000;123:2046–2054.PubMedCrossRefGoogle Scholar
  128. 128.
    Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain 2000;123:1403–1409.PubMedCrossRefGoogle Scholar
  129. 129.
    Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, Knierim DS, Sheridan C, Craig K, Andrews GH, Hinshaw DB. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 2000;23:114–125.PubMedCrossRefGoogle Scholar
  130. 130.
    Haseler LJ, Danielsen ER, Blüml E, Arcinue E, Ross BD. Sequential 1H-MRS of brain in „shaken baby syndrome“. III, 1848. 1995. Nice, France. Ref Type: Conference ProceedingGoogle Scholar
  131. 131.
    Barker PB, Lee RR, McArthur JC. AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 1995;195:58–64.PubMedGoogle Scholar
  132. 132.
    Chang L, Miller BL, McBride D, Cornford M, Oropilla G, Buchthal S, Chiang F, Aronow H, Beck CK, Ernst T. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology 1995;197:525–531.PubMedGoogle Scholar
  133. 133.
    Pavlakis SG, Lu D, Frank Y, Wiznia A, Eidelberg D, Barnett T, Hyman RA. Brain lactate and N-acetylaspartate in pediatric AIDS encephalopathy. AJNR Am J Neuroradiol 1998;19:383–385.PubMedGoogle Scholar
  134. 134.
    Lu D, Pavlakis SG, Frank Y, Bakshi S, Pahwa S, Gould RJ, Sison C, Hsu C, Lesser M, Hoberman M, Barnett T, Hyman RA. Proton MR spectroscopy of the basal ganglia in healthy children and children with AIDS. Radiology 1996;199:423–428.PubMedGoogle Scholar
  135. 135.
    Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB, Yang CF. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002;23:1369–1377.PubMedGoogle Scholar
  136. 136.
    Bizzi A, Ulug AM, Crawford TO, Passe T, Bugiani M, Bryan RN, Barker PB. Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 2001;22:1125–1130.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Petra S. Hüppi
    • 1
  • François Lazeyras
    • 1
  1. 1.Department of PediatricsUniversity Children’s HospitalGenevaSwitzerland

Personalised recommendations