Neurodegenerative Disorders

  • Ludovico D’incerti
  • Laura Farina
  • Paolo Tortori-Donati


Neuronal ceroid lipofuscinosis (NCL) is a group of diseases that collectively represent the most common inherited neurodegenerative diseases in childhood. Their incidence in the United States is estimated at 1:12,500. The different forms are diffuse worldwide, although most are mainly observed in Finland [1]. NCL is inherited as an autosomal recessive trait. Patient age at presentation varies from early infancy to adulthood. Most childhood forms are characterized by progressive mental and motor deterioration, blindness, epileptic seizures, and premature death.


Spinocerebellar Ataxia Cerebellar Atrophy Neuronal Ceroid Lipofuscinosis Friedreich Ataxia Autosomal Dominant Cerebellar Ataxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeman W, Donahue S, Dyken P, Green J. The neuronal ceroid lipofuscinoses (Batten-Vogt syndrome). In: Vinken PJ, Bruyn GW (eds) Handbook of Clinical Neurology, vol. 10. Amsterdam: North Holland, 1970:588–679.Google Scholar
  2. 2.
    Haltia M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol 2003; 62:1–13.PubMedGoogle Scholar
  3. 3.
    D’Incerti L. MRI in neuronal ceroid lipofuscinosis. Neurol Sci 2000;21(Suppl 3):S71–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Santavuori P, Gottlob I, Haltia M, et al. CLN1. Infantile and other types of NCL with GROD. In: Goebel HH, Mole SE, Lake BD (eds) The Neuronal Ceroid Lipofuscinoses (Batten disease). Amsterdam: IOS Press, 1999:16–36.Google Scholar
  5. 5.
    Vanhanen SL, Raininko R, Autti T, Santavuori P. MRI evaluation of the brain in infantile neuronal ceroid-lipofuscinosis: part 2: MRI findings in 21 patients. J Child Neurol 1995; 10:444–450.CrossRefPubMedGoogle Scholar
  6. 6.
    Santavuori P, Vanhanen SL, Autti T. Clinical and neuroradiological diagnostic aspects of neuronal ceroid lipofuscinoses disorders. Eur J Paediatr Neurol 2001; 5(Suppl A):157–161.CrossRefPubMedGoogle Scholar
  7. 7.
    Vanhanen SL, Raininko R, Santavuori P. Early differential diagnosis of infantile neuronal ceroid lipofuscinosis, Rett syndrome, and Krabbe disease by CT and MR. AJNR Am J Neuroradiol 1994; 15:1443–1453.PubMedGoogle Scholar
  8. 8.
    Uvebrandt P, Hagborg B. Neuronal ceroid-lipofuscinoses in Scandinavia. Epidemiology and clinical pictures. Neuropediatrics 1997; 28:6–8.CrossRefGoogle Scholar
  9. 9.
    Wisniewski KE, Kida E, Golabek AA, et al. Neuronal ceroid lipofuscinosis: classification and diagnosis. In: Wisniewski KE, Zhong N (eds) Batten Disease: Diagnosis, Treatment and Research. San Diego: Academic Press, 2001:1–34.Google Scholar
  10. 10.
    Elleder M, Franc J, Kraus J, Nevsimalova S, Sixtova K, Zeman J. Neuronal ceroid lipofuscinosis in Czech Republic: analysis of 57 cases. Report of the “Prague NCL Group”. Eur J Neurol 1997; 1:109–114.CrossRefGoogle Scholar
  11. 11.
    Williams RE, Lake BD, Elleder M, Sharp JD. CLN6. Variant late infantile/early juvenile NCL. In: Goebel HH, Mole SE, Lake BD (eds) The Neuronal Ceroid Lipofuscinosis (Batten disease). Amsterdam: IOS Press, 1999:102–113.Google Scholar
  12. 12.
    Alpers BJ. Diffuse progressive degeneration of gray matter of cerebrum. Arch Neurol Psychiat 1931; 25:469–505.Google Scholar
  13. 13.
    Huttenlocher PR, Solitare GB, Adams G. Infantile diffuse cerebral degeneration with hepatic cirrhosis. Arch Neurol 1976; 33:186–192.PubMedGoogle Scholar
  14. 14.
    Harding BN. Progressive neuronal degeneration of childhood with liver disease (Alpers-Huttenlocher syndrome): a personal review. J Child Neurol 1990; 5:273–287.CrossRefPubMedGoogle Scholar
  15. 15.
    Gauthier-Villars M, Landrieu P, Cormier-Daire V, Jacquemin E, Chretien D, Rotig A, Rustin P, Munnich A, de Lonlay P. Respiratory chain deficiency in Alpers syndrome. Neuropediatrics 2001; 32:150–152CrossRefPubMedGoogle Scholar
  16. 16.
    Uusimaa J, Finnila S, Vainionpaa L, Karppa M, Herva R, Rantala H, Hassinen IE, Majamaa K. A mutation in mitochondrial DNA-encoded cytochrome c oxidase II gene in a child with Alpers-Huttenlocher-like disease. Pediatrics 2003; 111:e262–e268.CrossRefPubMedGoogle Scholar
  17. 17.
    Naviaux RK, Nyhan WL, Barshop BA, Poulton J, Markusic D, Karpinski NC, Haas RH. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alpers’ syndrome. Ann Neurol 1999; 45:54–58.CrossRefPubMedGoogle Scholar
  18. 18.
    Naviaux RK, Nguyen KV. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol 2004; 55:706–712.CrossRefPubMedGoogle Scholar
  19. 19.
    Barkovich AJ. Pediatric Neuroimaging, 3rd edn. Philadelphia: Lippincott-Raven, 2000.Google Scholar
  20. 20.
    Barkovich AJ, Good WV, Koch TK, Berg BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol 1993; 14:1119–1137.PubMedGoogle Scholar
  21. 21.
    Ulmer S, Flemming K, Hahn A, Stephani U, Jansen O. Detection of acute cytotoxic changes in progressive neuronal degeneration of childhood with liver disease (Alpers-Huttenlocher syndrome) using diffusion-weighted MRI and MR spectroscopy. J Comput Assist Tomogr 2002; 26:641–646.CrossRefPubMedGoogle Scholar
  22. 22.
    Flemming K, Ulmer S, Duisberg B, Hahn A, Jansen O. MR spectroscopic findings in a case of Alpers-Huttenlocher syndrome. AJNR Am J Neuroradiol 2002; 23:1421–1423.PubMedGoogle Scholar
  23. 23.
    Gordon N. Pantothenate kinase-associated neurodegeneration (Hallervorden-Spatz syndrome). Eur J Pediatr Neurol 2002; 6:243–247.CrossRefGoogle Scholar
  24. 24.
    Angelini L, Nardocci N, Rumi V. Hallervorden-Spatz disease: clinical and MRI study in eleven cases diagnosed in life. J Neurol 1992; 239:417–425.CrossRefPubMedGoogle Scholar
  25. 25.
    Seitelberger F. Neuroaxonal dystrophy: its relation to aging and neurological diseases. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of Clinical Neurology: Extrapyramidal Disorders, vol. 49. New York: Elsevier, 1986:391–413.Google Scholar
  26. 26.
    Shevell MI, Pfeiffer J. Julius Hallervorde’s wartime activities: implication for science under dictatorship. Pediatr Neurol 2001; 25:162–165.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is detective in Hallervorden-Spatz sindrome. Nature Genet 2001; 28:345–349.CrossRefPubMedGoogle Scholar
  28. 28.
    Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J. Genetic, clinical and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003; 348:33–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Suri M. What’s new in neurogenetics? Focus on neurodegenerative disorders. Eur J Pediatr Neurol 2001; 5:221–224.CrossRefGoogle Scholar
  30. 30.
    Sethi KD, Adams RJ, Loring DW, el Gammal T. Hallervorden-Spatz disease: clinical and magnetic resonance imaging correlations. Ann Neurol 1988; 24:692–694.CrossRefPubMedGoogle Scholar
  31. 31.
    Savoiardo M, Halliday WC, Nardocci N, Strada L, D’Incerti L, Angelini L, Rumi V, Tesoro-Tess JD. Hallervorden-Spatz disease: MR and pathologic findings. AJNR Am J Neuroradiol 1993; 14:155–162.PubMedGoogle Scholar
  32. 32.
    Dooling EC, Schoene WC, Richardson EP Jr. Hallervorden-Spatz syndrome. Arch Neurol 1974; 30:70–83.PubMedGoogle Scholar
  33. 33.
    Ching KH, Westaway SK, Gitschier J, Higgins JJ, Hayflick SJ. HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology 2002; 58:1673–1674.PubMedGoogle Scholar
  34. 34.
    Hayflick SJ, Penzien JM, Michl W, Sharif UM, Rosman NP, Wheeler PG. Cranial MRI changes precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol 2001; 25:166–169.CrossRefPubMedGoogle Scholar
  35. 35.
    Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72:971–983.CrossRefGoogle Scholar
  36. 36.
    Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 1993; 4:387–392.CrossRefPubMedGoogle Scholar
  37. 37.
    Mahant N, McCusker EA, Byth K, Graham S; Huntington Study Group. Huntington’s disease: clinical correlates of disability and progression. Neurology 2003; 61:1085–1092.PubMedGoogle Scholar
  38. 38.
    De la Monte S, Vonsattel J, Richardson E. Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 1988; 47:516–525.CrossRefPubMedGoogle Scholar
  39. 39.
    Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E. Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 1998; 154:663–672.CrossRefPubMedGoogle Scholar
  40. 40.
    Aylward EH, Anderson NB, Bylsma FW, Wagster MV, Barta PE, Sherr M, Feeney J, Davis A, Rosenblatt A, Pearlson GD, Ross CA. Frontal lobe volume in patients with Huntington’s disease. Neurology 1998; 50:252–258.PubMedGoogle Scholar
  41. 41.
    Ho VB, Chuang HS, Rovira MJ, Koo B. Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 1995; 16:1405–1412.PubMedGoogle Scholar
  42. 42.
    Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM. Evidence for more widespread cerebral pathology in early HD. An MRI-based morphometric analysis. Neurology 2003; 60:1615–1620.PubMedGoogle Scholar
  43. 43.
    Schapiro M, Cecil KM, Doescher J, Kiefer AM, Jones BV. MR imaging and spectroscopy in juvenile Huntington disease. Pediatr Radiol 2004 Mar 23 [Epub ahead of print]Google Scholar
  44. 44.
    Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, Brooks DJ. Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord 1996; 11:167–173.CrossRefPubMedGoogle Scholar
  45. 45.
    Aicardi J, Castelein P. Infantile neuroaxonal dystrophy. Brain 1979; 102:727–748.CrossRefPubMedGoogle Scholar
  46. 46.
    Nardocci N, Zorzi G, Farina L, Binelli S, Scaioli W, Ciano C, Verga L, Angelini L, Savoiardo M, Bugiani O. Infantile neuroaxonal dystrophy: clinical spectrum and diagnostic criteria. Neurology 1999; 52:1472–1478.PubMedGoogle Scholar
  47. 47.
    Itoh K, Negishi H, Obayashi C, Hayashi Y, Hanioka K, Imai Y, Itoh H. Infantile neuroaxonal dystrophy: immunohistochemical and ultrastructural studies on the central and peripheral nervous systems in infantile neuroaxonal dystrophy. Kobe Med Sci 1993; 39:133–146.Google Scholar
  48. 48.
    Seitelberger F. Neuroaxonal dystrophy: its relation to aging and neurological diseases. In: Vinken PJ, Bruyn GW, Klawans HL (eds) Handbook of Clinical Neurology. Elsevier Science Publishers, Amsterdam, 1986:391–495.Google Scholar
  49. 49.
    Ramaekers VT, Lake BD, Harding B, Boyd S, Harden A, Brett EM, Wilson J. Diagnostic difficulties in infantile neuroaxonal dystrophy. A clinicopathological study of eight cases. Neuropediatrics 1987; 18:170–175.CrossRefPubMedGoogle Scholar
  50. 50.
    Barlow JK, Sims KB, Kolodny EH. Early cerebellar degeneration in twins with infantile neuroaxonal dystrophy. Ann Neurol 1989; 25:413–415.CrossRefPubMedGoogle Scholar
  51. 51.
    Ito M, Okuno T, Asato R, Mutoh K, Nakano S, Kataoka K, Fujii T, Mikawa H, Saida K. MRI in infantile neuroaxonal dystrophy. Pediatr Neurol 1989; 5:245–248.CrossRefPubMedGoogle Scholar
  52. 52.
    Itoh K, Kawai S, Nishino M, Lee Y, Negishi H, Itoh H. The clinical and pathological features of siblings with infantile neuroaxonal dystrophy-early neurological, radiological, neuroelectrophysiological and neuropathological characteristic. No To Hattatsu 1992; 24:283–288.PubMedGoogle Scholar
  53. 53.
    Tanabe Y, Iai M, Ishii M, Tamai K, Maemoto T, Ooe K, Takashima S. The use of magnetic resonance imaging in diagnosing infantile neuroaxonal dystrophy. Neurology 1993; 43:110–113.PubMedGoogle Scholar
  54. 54.
    Wakai S, Asanuma H, Hayasaka H, Kawamoto Y, Sueoka H, Ishikawa Y, Minami R, Chiba S. Ictal video-EEG analysis of infantile neuroaxonal dystrophy. Epilepsia 1994; 35:823–826.CrossRefPubMedGoogle Scholar
  55. 55.
    Uggetti C, Egitto MG, Fazzi E, Bianchi PE, Zappoli F, Martelli A, Lanzi G. Transsynaptic degeneration of lateral geniculate bodies in blind children: in vivo MR demonstration. AJNR Am J Neuroradiol 1997; 18:233–238.PubMedGoogle Scholar
  56. 56.
    Farina L, Nardocci N, Bruzzone MG, D’Incerti L, Zorzi G, Verga L, Morbin M, Savoiardo M. Infantile neuroaxonal dystrophy: neuroradiological studies in 11 patients. Neuroradiology 1999; 41:376–380.CrossRefPubMedGoogle Scholar
  57. 57.
    Ishii M, Tanabe Y, Goto M, Sugita K. MRI as an aid for diagnosis of infantile neuroaxonal dystrophy. No To Hattatsu 1992; 24:491–493.PubMedGoogle Scholar
  58. 58.
    Hedley-Whyte ET, Gilles FH, Uzman BG. Infantile neuroaxonal dystrophy. A disease characterized by altered terminal axons and synaptic endings. Neurology 1968; 18:891–906.PubMedGoogle Scholar
  59. 59.
    Hermann MM, Huttenlocher PR, Bensch KG. Electron microscopic observations in infantile neuroaxonal dystrophy. Report of a cortical biopsy and review of the recent literature. Arch Neurol 1969; 20:19–34.Google Scholar
  60. 60.
    Galil A, Schiffmann R, Neeman Z, Porter B. Infantile neuroaxonal dystrophy. Harefuah 1992; 123:387–390, 435.PubMedGoogle Scholar
  61. 61.
    Gordon N. Infantile neuroaxonal dystrophy (Seitelberger’s disease). Dev Med Child Neurol 2002; 44:849–851.PubMedGoogle Scholar
  62. 62.
    Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol 1993; 61:1–14.PubMedGoogle Scholar
  63. 63.
    Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3:291–304.CrossRefPubMedGoogle Scholar
  64. 64.
    Hardy J, Gwinn-Hardy K. Genetic classification of primary neurodegenerative disease. Science 1998; 282:1075–1079.CrossRefPubMedGoogle Scholar
  65. 65.
    Wullner U, Evert B, Klockgether T. Mechanisms of cell death in cerebellar disorders. Restor Neurol Neurosci 1998; 13:69–73.PubMedGoogle Scholar
  66. 66.
    Di Donato S. The complex clinical and genetic classification of inherited ataxias. I. Dominant ataxias. Ital J Neurol Sci 1998; 19:335–343.CrossRefPubMedGoogle Scholar
  67. 67.
    Savoiardo M, Grisoli M, Girotti F, Testa D, Caraceni T. MRI in sporadic olivopontocerebellar atrophy and striatonigral degeneration. Neurology 1997; 48:790–792.PubMedGoogle Scholar
  68. 68.
    Savoiardo M, Strada L, Girotti F, Zimmerman RA, Grisoli M, Testa D, Petrillo R. Olivopontocerebellar atrophy: MR diagnosis and relationship to multisystem atrophy. Radiology 1990; 174:693–696.PubMedGoogle Scholar
  69. 69.
    Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, Abele M, Burk K, Laccone F, Brice A, Dichgans J. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 1998; 121:1687–1693.CrossRefPubMedGoogle Scholar
  70. 70.
    Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotipe. Neurology 1998; 51:1081–1086.PubMedGoogle Scholar
  71. 71.
    Saitoh S, Momoi MY, Yamagata T, Miyao M, Suwa K. Clinical and electroencephalographic findings in juvenile type DRPLA. Pediatr Neurol 1998; 18:265–268.CrossRefPubMedGoogle Scholar
  72. 72.
    Shimojo Y, Osawa Y, Fukumizu M, Hanaoka S, Tanaka H, Ogata F, Sasaki M, Sugai K. Severe infantile dentatorubral pallidoluysian atrophy with extreme expansion of CAG repeats. Neurology 2001; 56:277–278.PubMedGoogle Scholar
  73. 73.
    Sano A, Yamauchi N, Kakimoto Y, Komure O, Kawai J, Hazama F, Kuzume K, Sano N, Kondo I. Anticipation in hereditary dentatorubral-pallidoluysian atrophy. Hum Genet 1994; 93:699–702.CrossRefPubMedGoogle Scholar
  74. 74.
    Miyazaki M, Kato T, Hashimoto T, Harada M, Kondo I, Kuroda Y. MR of childhood onset dentatorubral-pallidoluysian atrophy. AJNR Am J Neuroradiol 1995; 16:1834–1836.PubMedGoogle Scholar
  75. 75.
    Imamura A, Ito R, Tanaka S, Fukutomi O, Shimozawa N, Nishimura M, Suzuki Y, Kondo N, Yamada M, Orii T. High intensity proton and T2 weighted MR signals in the globus pallidus in juvenile type of dentatorubral and pallidoluysian atrophy. Neuropediatrics 1994; 25:234–237.CrossRefPubMedGoogle Scholar
  76. 76.
    Di Donato S. Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Ital J Neurol Sci 2001; 22:219–228.Google Scholar
  77. 77.
    Hewer RL. Study of fatal cases of Friedreich’s ataxia. Brit Med J 1968; 3:649–652.CrossRefPubMedGoogle Scholar
  78. 78.
    Ulku A, Arac N, Ozeren A. Friedreich’s ataxia: a clinical review of 20 childhood cases. Acta Neurol Scand 1988; 77:493–497.PubMedGoogle Scholar
  79. 79.
    Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335:1169–1175.CrossRefPubMedGoogle Scholar
  80. 80.
    Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Nat Acad Sci 1999; 96:11492–11495.CrossRefPubMedGoogle Scholar
  81. 81.
    Cavadini P, Gellera C, Patel PI, Isaya G. Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Molec Genet 2000; 9:2523–2530.CrossRefPubMedGoogle Scholar
  82. 82.
    Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 1996; 59:554–560.PubMedGoogle Scholar
  83. 83.
    Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, Riess O. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000; 107:132–137.CrossRefPubMedGoogle Scholar
  84. 84.
    Lauria G, Pareyson D, Grisoli M, Sghirlanzoni A. Clinical and magnetic resonance imaging findings in chronic sensory ganglionopathies. Ann Neurol 2000; 47:104–109.CrossRefPubMedGoogle Scholar
  85. 85.
    Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol 1994; 163:187–191.PubMedGoogle Scholar
  86. 86.
    Koskinen T, Valanne L, Ketonen LM, Pihko H. Infantileonset spinocerebellar ataxia: MR and CT findings. AJNR Am J Neuroradiol 1995; 16:1427–1433.PubMedGoogle Scholar
  87. 87.
    Aicardi J, Barbosa C, Andermann E, Andermann F, Morcos R, Ghanem Q, Fukuyama Y, Awaya Y, Moe P. Ataxia-ocular motor apraxia: a syndrome mimicking ataxia-telangiectasia. Ann Neurol 1988; 24:497–502.CrossRefPubMedGoogle Scholar
  88. 88.
    Barbot C, Coutinho P, Chorao R, Ferreira C, Barros J, Fineza I, Dias K, Monteiro J, Guimaraes A, Mendonca P, do Ceu Moreira M, Sequeiros J. Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 2001; 58:201–205.CrossRefPubMedGoogle Scholar
  89. 89.
    Harding AE, Matthews S, Jones S, Ellis CJ, Booth IW, Muller DP. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med 1985; 313:32–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Ben Hamida C, Doerflinger N, Belal S, Linder C, Reutenauer L, Dib C, Gyapay G, Vignal A, Le Paslier D, Cohen D, et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat Genet 1993; 5:195–200.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ludovico D’incerti
    • 1
  • Laura Farina
    • 1
  • Paolo Tortori-Donati
    • 2
  1. 1.Department of NeuroradiologyC. Besta National Neurological InstituteMilanItaly
  2. 2.Department of Pediatric NeuroradiologyG. Gaslini Children’s Research HospitalGenoaItaly

Personalised recommendations