Embryology of the Brain

  • Martin Catala


The construction of the brain during embryonic life is a fascinating event. Indeed, the brain is the most complex organ of the whole body, and this is particularly evident in human beings. The human brain contains a huge number of cells, and each neuron is able to connect a great number of other neurons, leading to a very complex network of circuits. The development of such a complex structure is likely to be highly regulated in order to give rise to reliable anatomical regions that can perform their normal tasks after birth. Furthermore, the capacity for growth of the human brain is fantastic during fetal life; this can be illustrated by comparing the size of the brain at the beginning and the end of gestation (Fig. 1.1).


Neural Tube Ventricular Zone Cortical Plate Neuroepithelial Cell Radial Glial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spemann H. Embryonic development and induction. Yale University Press, New Haven, 1938.Google Scholar
  2. 2.
    Waddington CH. Induction by the primitive streak and its derivatives in the chick. J Exp Biol 1933; 10:38–46.Google Scholar
  3. 3.
    Beddington RSP. Induction of a second neural axis by the mouse node. Development 1994; 120:613–620.PubMedGoogle Scholar
  4. 4.
    Bouwmeester T, Kim S-H, Sasai Y, Lu B, De Robertis E. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 1996; 382:595–601.PubMedCrossRefGoogle Scholar
  5. 5.
    Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature 1995; 374:425–430.PubMedCrossRefGoogle Scholar
  6. 6.
    Ang S-L, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 1996; 122:243–252.PubMedGoogle Scholar
  7. 7.
    Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 1995; 9:2646–2658.PubMedCrossRefGoogle Scholar
  8. 8.
    Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brûlet P. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995; 121:3279–3290.PubMedGoogle Scholar
  9. 9.
    Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM. The caudal limit of Otx2 gene expression as a marker of the hindbrain — midbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 1996; 122:3785–3797.PubMedGoogle Scholar
  10. 10.
    Hermesz E, Mackem S, Mahon KA. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 1996; 122:41–52.PubMedGoogle Scholar
  11. 11.
    Dattani MT, Martinez-Barbera J-P, Thomas PQ, Brickman JM, Gupta R, Martensson I-L, Toresson H, Fox M, Wales JKH, Hindmarsh PC, Krauss S, Beddington RSP, Robinson ICAF. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nature Genet 1998; 19:125–133.PubMedCrossRefGoogle Scholar
  12. 12.
    Vaage S. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Berlin: Springer Verlag, 1969.Google Scholar
  13. 13.
    Orr HA. Contribution to the embryology of the lizard. J Morphol 1887; 1:311–372.CrossRefGoogle Scholar
  14. 14.
    Marín F, Puelles L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 1995; 7:1714–1738.PubMedCrossRefGoogle Scholar
  15. 15.
    Lumsden A, Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature 1989; 337:424–428.PubMedCrossRefGoogle Scholar
  16. 16.
    Fraser S, Keynes R, Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 1990; 344:431–435.PubMedCrossRefGoogle Scholar
  17. 17.
    Birgbauer E, Fraser SE. Violation of cell lineage restriction compartments in the chick hindbrain. Development 1994; 120:1347–1356.PubMedGoogle Scholar
  18. 18.
    Guthrie S, Prince V, Lumsden A. Selective dispersal of avain rhombomere cells in orthotopic and heterotopic grafts. Development 1993; 118:527–538.PubMedGoogle Scholar
  19. 19.
    Cooke J, Moens CB. Boundary formation in the hindbrain: Eph only it were simple... Trends Neurosci 2002; 25:260–267.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilkinson D, Bhatt S, Chavrier P, Bravo R, Charnay P. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 1989; 337:461–464.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnston SH, Ruaskolb C, Wilson R, Prabhakaran B, Irvine KD, Vogt TF. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 1997; 124:2245–2254.PubMedGoogle Scholar
  22. 22.
    Prince VE, Holley SA, Bailly-Cuif L, Prabhajaran B, Oates AC, Ho RK, Vogt TF. Zebrafish lunatic fringe demarcates segmental boundaries. Mech Dev 2001; 105:175–180.PubMedCrossRefGoogle Scholar
  23. 23.
    McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lexis J. The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 1994; 120:2199–2211.PubMedGoogle Scholar
  24. 24.
    Schneider-Maunoury S, Topilko P, Seitanidou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 1993; 75:1199–1214.PubMedCrossRefGoogle Scholar
  25. 25.
    Swiatek PJ, Gridley T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20. Genes Dev 1993; 7:2071–2084.PubMedCrossRefGoogle Scholar
  26. 26.
    Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dollé P, Gorry P, Lumsden A, Chambon P. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 1993; 119:319–338.PubMedGoogle Scholar
  27. 27.
    Studer M, Lumsden A, Ariza-Mc Naughton L, Bradley A, Krumlauf R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 1996; 384:630–634.PubMedCrossRefGoogle Scholar
  28. 28.
    Grapin-Botton A, Bonnin M-A, Ariza-Mac Naughton L, Krumlauf R, Le Douarin NM. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 1995; 121:2707–2721.PubMedGoogle Scholar
  29. 29.
    Grapin-Botton A, Bonnin M-A, Le Douarin NM. Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 1997; 124:849–859.PubMedGoogle Scholar
  30. 30.
    Itasaki N, Sharpe J, Morrison A, Krumlauf R. Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 1996; 16:487–500.PubMedCrossRefGoogle Scholar
  31. 31.
    Maden M, Gale E, Kostetskii I, Zile M. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 1996; 6:417–426.PubMedCrossRefGoogle Scholar
  32. 32.
    Gale E, Zile M, Maden M. Hindbrain respecification in the retinoid-deficient quail. Mech Dev 1999; 89:43–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000; 127:75–85.PubMedGoogle Scholar
  34. 34.
    Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 1999; 216:282–296.PubMedCrossRefGoogle Scholar
  35. 35.
    Oosterveen T, Niederreither K, Dollé P, Chambon P, Meijlink F, Deschamps J. Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J 2003; 22:262–269.PubMedCrossRefGoogle Scholar
  36. 36.
    Dupe V, Lumsden A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 2001; 128:2199–2208.PubMedGoogle Scholar
  37. 37.
    Marín F, Charnay P. Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 2000; 127:4925–4935.PubMedGoogle Scholar
  38. 38.
    Martinez S, Alvarado-Mallart RM. Rostral cerebellum originates from the caudal portion of the so-called “mesencephalic” vesicle: a study using chick/quail chimeras. Eur J Neurosci 1989; 1:549–560.PubMedCrossRefGoogle Scholar
  39. 39.
    Hallonet MER, Teillet M-A, Le Douarin NM. A new approach to the development of the cerebellum provided by the quailchick marker system. Development 1990; 108:19–31.PubMedGoogle Scholar
  40. 40.
    Alvarez Otero R, Sotelo C, Alvarado-Mallart RM. Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol 1993; 333:597–615.PubMedCrossRefGoogle Scholar
  41. 41.
    Hallonet MER, Le Douarin NM. Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 1993; 5:1145–1155.PubMedCrossRefGoogle Scholar
  42. 42.
    Wingate RJT, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development 1999; 126:4395–4404.PubMedGoogle Scholar
  43. 43.
    Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JLR. Longitudinal organization of the anterior neural plate and neural tube. Development 1995; 121:3923–3933.PubMedGoogle Scholar
  44. 44.
    Rubenstein JLR, Shimamura K, Martinez S, Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 1998;21:445–477.PubMedCrossRefGoogle Scholar
  45. 45.
    Müller F, O’Rahilly R. The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 1988;177:495–511.PubMedCrossRefGoogle Scholar
  46. 46.
    Müller F, O’Rahilly R. The development of the human brain, including the longitudinal zoning in the diencephalon at stage 15. Anat Embryol 1988;179:55–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Müller F, O’Rahilly R. The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol 1989;180:353–369.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Rahilly R, Müller F. The embryonic human brain. An atlas of developmental stages. New York: Wiley-Liss, 1994.Google Scholar
  49. 49.
    Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1997;124:2203–2212.PubMedGoogle Scholar
  50. 50.
    Monuki ES, Walsh CA. Mechanisms of cerebral cortical patterning in mice and humans. Nature Neurosci (Suppl) 2001;4:1199–1206.PubMedCrossRefGoogle Scholar
  51. 51.
    Hayhurst M, Mc Connell SK. Mouse models of holoprosencephaly. Curr Opin Neurol 2003;16:135–141.PubMedCrossRefGoogle Scholar
  52. 52.
    Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet 1996;14:357–360.PubMedCrossRefGoogle Scholar
  53. 53.
    Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, Sujansky E, Bale SJ, Muenke M. Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 2002;110:297–301.PubMedCrossRefGoogle Scholar
  54. 54.
    Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M. Loss of function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA 2003;100:13424–13429.PubMedCrossRefGoogle Scholar
  55. 55.
    Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy PA. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of Dispatched. Cell 2002;111:63–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Gripp KW, Wotton D, Edwards ML, Roessler E, Ades L, Meinecke P, Richieri-Costa A, Zackai EH, Massague J, Muenke M, Elledge SJ. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nature Genet 2000;25:205–208.PubMedCrossRefGoogle Scholar
  57. 57.
    De La Cruz JM, Bamford RN, Burdine RD, Roessler E, Barkovich AJ, Donnai D, Schier AF, Muenke M. A loss of function mutation if the CFC domain of TDGF1 is associated with human forebrain defects. Hum Genet 2000;110:422–428.CrossRefGoogle Scholar
  58. 58.
    Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH, Rommens J, Muenke M. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genet 1999;22:196–198.PubMedCrossRefGoogle Scholar
  59. 59.
    Brown SA, Warburton D, Brown LY, Yu C-h, Roeder ER, Stengel-Rutkowski S, Hennekam RCM, Muenke M. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nature Genet 1998;20:180–183.PubMedCrossRefGoogle Scholar
  60. 60.
    Brown LY, Kottmann AH, Brown S. Immunolocalization of Zic2 expression in the developing mouse forebrain. Gene Expr Patterns 2003;3:361–367.PubMedCrossRefGoogle Scholar
  61. 61.
    Sauer FC. Mitosis in the neural tube. J Comp Neurol 1935;62:377–405.CrossRefGoogle Scholar
  62. 62.
    Martin AH. Significance of mitotic spindle fibre orientation in the neural tube. Nature 1967;216:1133–1134.PubMedCrossRefGoogle Scholar
  63. 63.
    Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 1995;82:631–641.PubMedCrossRefGoogle Scholar
  64. 64.
    Fishell G, Kriegstein AR. Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 2003;13:34–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhong W, Jiang M-M, Weinmaster G, Jan LY, Jan YN. Differential expression of mammalian Numb, Numblike and Notch1 sugests distinct roles during mouse cortical neurogenesis. Development 1997;124:1887–1897.PubMedGoogle Scholar
  66. 66.
    Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 2001;128:689–702.PubMedGoogle Scholar
  67. 67.
    Shen Q, Zhong W, Jan YN, Temple S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 2002;129:4843–4853.PubMedGoogle Scholar
  68. 68.
    Wakamatsu Y, Maynard TM, Jones SU, Weston JA. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 1999;23:71–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Petersen PH, Zou K, Hwang JK, Jan YN, Zhong W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 2002;419:929–934.PubMedCrossRefGoogle Scholar
  70. 70.
    Hevner RF, Neogi T, Englund C, Daza RAM, Fink A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Dev Brain Res 2003;141:39–53.CrossRefGoogle Scholar
  71. 71.
    Bar I, Lambert de Rouvroit C, Goffinet AM. The evolution of cortical development. An hypothesis based on the role of the Reelin signalling pathway. Trends Neurosci 2000;23:633–638.PubMedCrossRefGoogle Scholar
  72. 72.
    Rice DS, Sheldon M, D’Arcangelo G, Nakajima K, Goldowitz D, Curran T. Disabled-1 acts downstream of Reelin in a signalling pathway that controls laminar organization in the mammalian brain. Development 1998;125:3719–3729.PubMedGoogle Scholar
  73. 73.
    Hong SE, Shugart YY, Huang DT, Al Shahwan S, Grant PE, Hourihane JO’B, Martin NDT, Walsh CA. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet 2000;26:93–96.PubMedCrossRefGoogle Scholar
  74. 74.
    Walsh C, Cepko CL. Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 1992;255:434–440.PubMedCrossRefGoogle Scholar
  75. 75.
    Walsh C, Cepko CL. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 1993;362:632–635.PubMedCrossRefGoogle Scholar
  76. 76.
    O’Rourke NA, Dailey M, Smith SJ, Mc Connell SK. Diverse migratory pathways in the developing cerebral cortex. Science 1992;258:299–302.PubMedCrossRefGoogle Scholar
  77. 77.
    Fishell G, Mason CA, Hatten ME. Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 1993;362:636–638.PubMedCrossRefGoogle Scholar
  78. 78.
    Reid CB, Liang I, Walsh C. Systematic widespread clonal organization in cerebral cortex. Neuron 1995;15:299–310.PubMedCrossRefGoogle Scholar
  79. 79.
    Tan SS, Breen S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 1993;362:638–640.PubMedCrossRefGoogle Scholar
  80. 80.
    Nadarajah B, Brunstrom JE, Grutzendler J, Wong ROL, Pearlman AL. Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci 2001;4:143–150.PubMedCrossRefGoogle Scholar
  81. 81.
    Malatesta P, Hartfuss E, Götz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000;127:5253–5263.PubMedGoogle Scholar
  82. 82.
    Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001;409:714–772.PubMedCrossRefGoogle Scholar
  83. 83.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing presursor cells of the embryonic corticla ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002;22:3161–3173.PubMedGoogle Scholar
  84. 84.
    Tamamaki N, Nakamura K, Okamoto K, Kaneko T. Radial glia is a progenitor of nocortical neurons in the developing cerebral cortex. Neurosci Res 2001;41:51–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 2001;31:727–741.PubMedCrossRefGoogle Scholar
  86. 86.
    Nery S, Fishell G, Corbin JG. The caudal ganglionic eminence is a source of distinct cortical and sucortical cell populations. Nature Neurosci 2002;5:1279–1287.PubMedCrossRefGoogle Scholar
  87. 87.
    De Carlos JA, Lopez-Mascaraque I, Valverde F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 1996;16:6146–6156.PubMedGoogle Scholar
  88. 88.
    Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997;278:474–476.PubMedCrossRefGoogle Scholar
  89. 89.
    Tamamaki N, Fujimori KE, Takauji R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 1997;17:8313–8323.PubMedGoogle Scholar
  90. 90.
    Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 1999;19:7881–7888.PubMedGoogle Scholar
  91. 91.
    Brun A. The subpial granular layer of the fetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand Suppl 1965;179:7–98.Google Scholar
  92. 92.
    Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. Nature 2002;417:645–649.PubMedCrossRefGoogle Scholar
  93. 93.
    Nadarajah B, Alifragis P, Wong ROL, Parnavelas JG (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 2003;13:607–611.PubMedCrossRefGoogle Scholar
  94. 94.
    McConnell SK, Ghosh A, Shatz CJ. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 1989;245:978–982.PubMedCrossRefGoogle Scholar
  95. 95.
    De Carlos JA, O’Leary DDM. Growth and targeting of subplate axons and establishment of major cortical pathways. J Neurosci 1992;12:1194–1211.PubMedGoogle Scholar
  96. 96.
    Mc Connell SK, Ghosh A, Shatz CJ. Subplate pioneers and formation of descending connections from cerebral cortex. J Neurosci 1994;14:1892–1907.Google Scholar
  97. 97.
    Friauf E, Mc Connell SK, Shatz CJ. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J Neurosci 1990;10:2601–2613.PubMedGoogle Scholar
  98. 98.
    Ghosh A, Antonini A, Mc Connell SK, Shatz CJ. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 1990;347:179–181.PubMedCrossRefGoogle Scholar
  99. 99.
    Ghosh A, Shatz CJ. A role for subplate neurons in the patterning of connections from thalamus to neocortex. Development 1993;117:1031–1047.PubMedGoogle Scholar
  100. 100.
    Ghosh A, Shatz CJ. Segregation of geniculocortical afferents during the critical period: a role for subplate neurons. J Neurosci 1994;14:3862–3880.PubMedGoogle Scholar
  101. 101.
    Rakic P. Specification of cerebral cortical areas. Science 1988;241:170–176.PubMedCrossRefGoogle Scholar
  102. 102.
    O’Leary DDM. Do cortical areas emerge from a protocortex? Trends Neurosci 1989;12:400–406.PubMedCrossRefGoogle Scholar
  103. 103.
    McConnell SK. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci 1988;8:945–974.PubMedGoogle Scholar
  104. 104.
    McConnell SK, Kaznowski CE. Cell cycle dependence of laminar determination in the developing cerebral cortex. Science 1991;254:282–285.PubMedCrossRefGoogle Scholar
  105. 105.
    Desai AR, McConnell SK. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 2000;127:2863–2872.PubMedGoogle Scholar
  106. 106.
    Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol 1977;1:86–93.PubMedCrossRefGoogle Scholar
  107. 107.
    Heffner CD, Lumsden AG, O’Leary DD. Target control of collateral extension and directional axon growth in the mammalian brain. Science 1990;247:217–220.PubMedCrossRefGoogle Scholar
  108. 108.
    Métin C, Godement P. The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons. J Neurosci 1996;16:3219–3225.PubMedGoogle Scholar
  109. 109.
    Richards LJ, Koester SE, Tuttle R, O’Leary DD. Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci 1997;17:2445–2458.PubMedGoogle Scholar
  110. 110.
    Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowt-promoting protein homologous to C. elegans UNC-6. Cell 1994;78:409–424.PubMedCrossRefGoogle Scholar
  111. 111.
    Kennedy TE, Serafini T, De La Torre JR, Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 1994;78:425–435.PubMedCrossRefGoogle Scholar
  112. 112.
    Metin C, Deleglise D, Serafini T, Kennedy TE, Tessier-Lavigne M. A role for netrin-1 in the guidance of cortical efferents. Development 1997;124:5063–5074.PubMedGoogle Scholar
  113. 113.
    Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M. Netrin-1 is required for commissural axon guidance in the developing nervous system. Cell 1996;87:1001–1014.PubMedCrossRefGoogle Scholar
  114. 114.
    Braisted JE, Catalano SM, Stimac R, Kennedy TE, Tessier-Lavigne M, Shatz CJ, O’Leary DD. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projections. J Neurosci 2000;20:5792–5801.PubMedGoogle Scholar
  115. 115.
    Finger JH, Bronson RT, Harris B, Johnson K, Przyborski SA, Ackerman SL. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci 2002;22:10346–10356.PubMedGoogle Scholar
  116. 116.
    Chow CW, Halliday JL, Anderson RM, Danks DM, Fortune DW. Congenital absence of pyramids and its significance in genetic disease. Acta Neuropathol 1985;65:313–317.PubMedCrossRefGoogle Scholar
  117. 117.
    Cohen NR, Taylor JSH, Scott LB, Guillery RW, Soriano P, Furley AJW. Errors in corticospinal axon guidance in mice lacking cell adhesion molecule L1. Curr Biol 1997;8:26–33.CrossRefGoogle Scholar
  118. 118.
    Dahme M, Bartsch U, Martin R, Anliker B, Schachner M, Mantei N. Disruption of the mouse L1 gene leads to malformation of the nervous system. Nat Genet 1997;17:346–349.PubMedCrossRefGoogle Scholar
  119. 119.
    Demyanenko GP, Tsai AY, Maness PF. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999;19:4907–4920.PubMedGoogle Scholar
  120. 120.
    Dottori M, Hartley L, Galea M, Paxinos G, Polizzotto M, Kilpatrick T, Bartlett PF, Murphy M, Köntgen F, Boyd AW. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci USA 1998;95:13248–13253.PubMedCrossRefGoogle Scholar
  121. 121.
    Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 2001;29:73–84.PubMedCrossRefGoogle Scholar
  122. 122.
    Kullander K, Croll SD, Zimmer M, Pan L, Mc Clain J, Hughes V, Zabski S, De Chiara TM, Klein R, Yancopoulos GD, Gale NW. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 2001;15:877–888.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Martin Catala
    • 1
  1. 1.Laboratory of Histology and Embryology, Pitiè-Salpêtrière School of MedicineUniversity of Paris 6ParisFrance

Personalised recommendations