Radiation-Detecting Systems


Sentinel Lymph Node Gamma Camera Gamma Probe Penile Cancer Sentinel Lymph Node Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel Nabi H, Doerr RJ, Balu D, Rogan L, Farrell EL, Evans NH (1993) Gamma probe assisted ex vivo detection of small lymph node metastases following the administration of indium-111-labelled monoclonal antibodies to colorectal cancers. J Nucl Med 34:1818–1822PubMedGoogle Scholar
  2. Adams S, Baum RR, Hertel A, Wenish HJ, Staib-Sebler E, Herrmann G, Enke A, Hor G (1998) Intraoperative gamma probe detection of neuroendocrine tumors. J Nucl Med 39:1155–1160PubMedGoogle Scholar
  3. Aitken DR, Hinkle GH, Thursten MO, Tuttle SE, Martin DT, Olsen J, Haagensen DE, Houchens D, Martin EW (1984) A gamma detecting probe for radioimmune detection of CEA producing tumors: successful experimental use and clinical case report. Dis Colon Rectum 27:279–282PubMedGoogle Scholar
  4. Arnold MW, Schneebaum S, Berens A, Mojzisik C, Hinkle G, Martin EW (1992a) Radioimmunoguided surgery challenges traditional decision making in patients with primary colorectal cancer. Surgery 112:624–630PubMedGoogle Scholar
  5. Arnold MW, Schneebaum S, Berens A, Petty L, Mojzisik C, Hinkle G, Martin EW (1992 b) Intraoperative detection of colorectal cancer with radioimmunoguided surgery and CC49, a second generation monoclonal antibody. Ann Surg 216:627–632PubMedGoogle Scholar
  6. Arnold MW, Hitchcock CL, Young DC, Burak WE, Bertsch DJ, Martin EW (1996) Intraabdominal patterns of disease dissemination in colorectal cancer identified using radioimmunoguided surgery. Dis Colon Rectum 39:509–513CrossRefPubMedGoogle Scholar
  7. Aspergen K, Styrand SE, Person BRR (1978) Quantitative lymphoscintigraphy for detection of metastases to the internal mammary lymph-nodes. Biokinetics of Tc99m sulfur colloid uptake and correlation with microscopy. Acta Radiol Oncol 17:17–26Google Scholar
  8. British Standards Institute (1994) Fundamental aspects of safety standards for medical electrical equipment. BS PD 6573. BSI, LondonGoogle Scholar
  9. Burak WE, Schneebaum S (1995) Radioimmunoguided surgery: recurrent clinical trials and applications. Semin Col Rectal Surg 6:225–233Google Scholar
  10. Burak WE, Schneebaum S, Kim JA, Arnold MW, Hinkle G, Berens A, Mojzisik C, Martin EW (1995) Pilot study evaluating the intraoperative localization of radiolabelled monoclonal antibody CC83 in patients with metastastic colorectal carcinoma. Surgery 118:103–108PubMedGoogle Scholar
  11. Curtet C, Vuillez JP, Daniel G, Aillet G, Chetanneau, Visset J, Kremer M, Thedrez P, Chatal JF (1990) Feasibility study of radioimmunoguided surgery of colorectal carcinomas using indium-111-CEA-specific monoclonal antibody. Eur J Nucl Med 17:299–304PubMedGoogle Scholar
  12. Davidson BR, Waddington WA, Short MD, Boulos PB (1991) Intraoperative localization of colorectal cancers using radiolabelled monoclonal antibodies. Br J Surg 78:664–670PubMedGoogle Scholar
  13. Eshima D, Fauconnior T, Eshima L, Thornback JR (2000) Radiopharmaceuticals for lymphoscintigraphy: including dosimetry and radiation considerations. Semin Nucl Med 30:25–32PubMedGoogle Scholar
  14. Giubbini R, Bettini R, Casucci R, Garancini S, Magistretti G, Roncari G (1981) The association of lymph-nodes scintigraphy with 99mTc-sulfur-microcolloid and ultrasound scan in stage diagnosis of lymphomas (author's translation). Radiol Med (Torino) 67:823–827Google Scholar
  15. Goins B, Klipper R, Rudolph AS, Phillips WT (1994) Use of technetium-99m-liposomes in tumor imaging. J Nucl Med 35:1491–1498PubMedGoogle Scholar
  16. Goldstone KE, Jackson PC, Myers MJ, Simpson AE (eds) (1991) Radiation protection in nuclear medicine and pathology. (Report no 63) Institute of Physical Sciences in Medicine, YorkGoogle Scholar
  17. Harris CC, Bigelow RR, Francis JE, Kelly GG, Bell P (1956) A CSI (TI) crystal surgical scintillation probe. Nucleonics 14:102–108Google Scholar
  18. Harvey WC, Lancaster JL (1981) Technical and clinical characteristics of a surgical biopsy probe. J Nucl Med 22:184–186PubMedGoogle Scholar
  19. Henze E, Schelbert HR, Collins JC, Collins JD, Najafi A, Barrio JR, Bennett LR (1982) Lymphoscintigraphy with T-99m labelled dextran. J Nucl Med 23:923PubMedGoogle Scholar
  20. Hoefnagel CA (1994) Metaiodobenzylguanidine and somatostatin in oncology: role in the management of neural crest tumours. Eur J Nucl Med 21:561–581PubMedGoogle Scholar
  21. International Electrotechnical Commission (1988) Medical electrical equipment. 1. General requirements for safety. [IEC 60101-1 (1988-12)] IEC, GenevaGoogle Scholar
  22. International Electrotechnical Commission (1994) Fundamental aspects of safety standards for medical electrical equipment. [IEC TR 60513 (1994-01)] IEC, GenevaGoogle Scholar
  23. Kapteijn BAE, Horenblas S, Nieweg OE, Meinhardt W, Hoefnagel CA, De Jong D, Kroon BBR (1997) Dynamic sentinel node procedure in penile cancer: a report on 19 cases. In: Kapteijn BAE (ed) Biopsy of the sentinel node in melanoma, penile carcinoma and breast carcinoma — the case for lymphatic mapping. Thesis, University of AmsterdamGoogle Scholar
  24. Keshtgar MRS, Waddington WA, Lakhani SR, Ell PJ (eds) (1999) The sentinel node in surgical oncology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Krenning EP, Wekkeboom DJ, Bakker WH, Breeman WAP, Kooij PPM, Oei HY, Hagen M van, Postema PTE, Jong M de, Reubi JC, Visser TJ, Reijs AEM, Hofland LJ, Koper JW, Lamberts SWJ (1993) Somatostatin receptor scintigraphy with (111In-DTPA-d-Phe1) and 123I-Tyr3)-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731CrossRefPubMedGoogle Scholar
  26. Kuhn JA, Corbisiero RM, Buras RR, Carroll RG, Wagman LD, Wilson LA, Yamauchi D, Smith MM, Kondo R, Beatty JD (1991) Intraoperative gamma detection probe with presurgical antibody imaging in colon cancer. Arch Surg 126:1398–1403PubMedGoogle Scholar
  27. Lennquist S, Pershiden J, Smeds S (1988) The value of intraoperative scintigraphy as a routine procedure in thyroid carcinoma. World Surg 12:586–592Google Scholar
  28. Martelli H, Ricard M, Larroquet M, Violand M, Paraf F, Fabre M, Josset P, Helardot PG, Gauthier F, Terrier-Lacombe M-J, Michon J, Hartmann O, Tabone MD, Patte C, Lumbroso J, Grüner M (1998) Intraoperative localization of neuroblastoma in children with 123-I or 125-I radiolabeled metaiodobenzylguanidine. Surgery 123:51–57CrossRefPubMedGoogle Scholar
  29. Martinez DA, O'Dorisio MS, O'Dorisio TM, Qualman SJ, Caniano DA, Teich S, Besner GE, King DR (1995) Intraoperative detection and resection of occult neuroblastoma: a technique exploiting somatostatin-receptor expression. J Pediatr Surg 30:1580–1589CrossRefPubMedGoogle Scholar
  30. Medical Devices Directive 93/42/EEC (1993) Official Journal of the European Communities, no L189/90, 14 June 1993 (ISBN 0-119-1221-38)Google Scholar
  31. Meyer CM, Leckitner ML, Logic JR, Balch CE, Bessey PQ, Tauxe WN (1979) Technetium-99m sulfur colloid cutaneous lymphoscintigraphy in the management of truncal melanoma. Radiology 131:205–209PubMedGoogle Scholar
  32. Morris AC, Barclay TR, Tanida R, Nemcek JV (1971) A miniaturised probe for detecting radioactivity at thyroid surgery. Phys Med Biol 16:397–404CrossRefPubMedGoogle Scholar
  33. Öhrvall U, Westlin JE, Nilsson S, Juhlin C, Rastad J, Lundqvist H, Åkerström G (1997) Intraoperative gamma detection reveals abdominal endocrine tumors more efficiently than somatostatin receptor scintigraphy. Cancer 80:2490–2494CrossRefPubMedGoogle Scholar
  34. Oku N, Namba Y, Takeda A, Okada S (1993) Tumor imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol 20:407–412CrossRefPubMedGoogle Scholar
  35. Phillips WT, Rudolph AS, Goins B, Klipper R (1992 a) Biodistribution studies of liposome encapsulated hemoglobin (LEH) studied with a newly developed 99m-technetium liposome label. Biomater Artif Cells Immobil Biotechnol 20:757–760Google Scholar
  36. Phillips WT, Rudolph AS, Goins B, Klipper R, Blumhardt R (1992 b) A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Radiat Appl Instrum [B] 19:539–547Google Scholar
  37. Reuter M, Montz R, de Heer K, Schäfer H, Klapdor R, Desler K, Schreiber HW (1992) Detection of colorectal carcinomas by intraoperative RIS in addition to preoperative RIS: surgical and immunohistochemical findings. Eur J Nucl Med 19:102–109CrossRefPubMedGoogle Scholar
  38. Schirmer WJ, O'Dorisio TM, Schirmer TP, Mojzisik CM, Hinkle GH, Martin EW (1993) Intraoperative localization of neuroendocrine tumors with 125-I-TYR(3)-octreotide and a hand-held gamma detecting probe. Surgery 114:745–752PubMedGoogle Scholar
  39. Selverstone B, Sweet WH, Robinson CV (1949) The clinical use of radioactive phosphorus in the surgery of brain tumours. Ann Surg 130:643–651Google Scholar
  40. Strand SE, Person BRR (1979) Quantitative lymphoscintigraphy. 1. Basic concepts for optimal uptake of radiocolloids in the parasternal lymph-nodes of rabbits. M Nucl Med 20:1038–1046Google Scholar
  41. Waddington WA, Keshtgar MR, Taylor I, Lakhani SR, Short MD, Ell PJ (2000) Radiation safety of the sentinel lymph node technique in breast cancer. Eur J Nucl Med 27:377–391CrossRefPubMedGoogle Scholar
  42. Wängberg B, Forssell-Aronsson E, Tisell LE, Nilsson O, Fjälling M, Ahlman H (1996) Intraoperative detection of somatostatin-receptor-positive neuroendocrine tumours using 111indium-labelled DTPA-d-Phe1-octreotide. Br J Cancer 73:770–775PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations