Skip to main content
  • 2398 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    PubMed  Google Scholar 

  2. Fullerton GD, Potter JL, Dornbluth NC (1982) NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1:209–226

    Article  PubMed  Google Scholar 

  3. Sipponen JT, Sepponen RE, Sivula A (1983) Nuclear magnetic resonance (NMR) imaging of intracerebral hemorrhage in the acute and resolving phases. J Comput Assist Tomogr 7:954–959

    PubMed  Google Scholar 

  4. DeLaPaz RL, New PF, et al. (1984) NMR imaging of intracranial hemorrhage. J Comput Assist Tomogr 8:599–607

    PubMed  Google Scholar 

  5. Bradley WG Jr, Schmidt PG (1985) Effect of methemoglobin formation on the MR appearance of subarachnoid hemorrhage. Radiology 156:99–103

    PubMed  Google Scholar 

  6. Gomori JM, Grossman RI, Bilaniuk LT, Zimmerman RA, Goldberg HI (1985) High-field MR imaging of superficial siderosis of the central nervous system. J Comput Assist Tomogr 9:972–975

    PubMed  Google Scholar 

  7. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT (1985) Intracranial hematomas: imaging by high-field MR. Radiology 157:87–93

    PubMed  Google Scholar 

  8. Sipponen JT, Sepponen RE, Tanttu JI, Sivula A (1985) Intracranial hematomas studied by MR imaging at 0.17 and 0.02 T. J Comput Assist Tomogr 9:698–704

    PubMed  Google Scholar 

  9. Grossman RI, Kemp SS, Ip CY, et al. (1986) Importance of oxygenation in the appearance of acute subarachnoid hemorrhage on high field magnetic resonance imaging. Acta Radiol Suppl 369:56–58

    PubMed  Google Scholar 

  10. Di Chiro G, Brooks RA, Girton ME, et al. (1986) Sequential MR studies of intracerebral hematomas in monkeys. AJNR Am J Neuroradiol 7:193–199

    PubMed  Google Scholar 

  11. Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11:684–690

    PubMed  Google Scholar 

  12. Zimmerman RD, Heier LA, Snow RB, Liu DP, Kelly AB, Deck MD (1988) Acute intracranial hemorrhage: intensity changes on sequential MR scans at 0.5 T. AJR Am J Roentgenol 150:651–661

    PubMed  Google Scholar 

  13. Hayman LA, Ford JJ, Taber KH, Saleem A, Round ME, Bryan RN (1988) T2 effect of hemoglobin concentration: assessment with in vitro MR spectroscopy. Radiology 168:489–491

    PubMed  Google Scholar 

  14. Brooks RA, Di Chiro G, Patronas N (1989) MR imaging of cerebral hematomas at different field strengths: theory and applications. J Comput Assist Tomogr 13:194–206

    PubMed  Google Scholar 

  15. Hayman LA, McArdle CB, Taber KH, et al. (1989) MR imaging of hyperacute intracranial hemorrhage in the cat. AJNR Am J Neuroradiol 10:681–686

    PubMed  Google Scholar 

  16. Hayman LA, Taber KH, Ford JJ, et al. (1989) Effect of clot formation and retraction on spin-echo MR images of blood: an in vitro study. AJNR Am J Neuroradiol 10:1155–1158

    PubMed  Google Scholar 

  17. Hardy PA, Kucharczyk W, Henkelman RM (1990) Cause of signal loss in MR images of old hemorrhagic lesions. Radiology 174:549–555

    PubMed  Google Scholar 

  18. Bryant RG, Marill K, Blackmore C, Francis C (1990) Magnetic relaxation in blood and blood clots. Magn Reson Med 13:133–144

    PubMed  Google Scholar 

  19. Clark RA, Watanabe AT, Bradley WG Jr, Roberts JD (1990) Acute hematomas: effects of deoxygenation, hematocrit, and fibrin-clot formation and retraction on T2 shortening. Radiology 175:201–206

    PubMed  Google Scholar 

  20. Thulborn KR, Sorensen AG, Kowall NW, et al. (1990) The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJNR Am J Neuroradiol 11:291–297

    PubMed  Google Scholar 

  21. Bizzi A, Brooks RA, Brunetti A, et al. (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177:59–65

    PubMed  Google Scholar 

  22. Bradley WG Jr (1993) MR appearance of hemorrhage in the brain. Radiology 189:15–26

    PubMed  Google Scholar 

  23. Ekholm S (1996) Intracranial hemorrhages. Rivista di Neuroradiologia 9(Suppl 1):17–21

    Google Scholar 

  24. Ebisu T, Tanaka C, Umeda M, et al. (1997) Hemorrhagic and nonhemorrhagic stroke: diagnosis with diffusion-weighted and T2-weighted echoplanar MR imaging. Radiology 203:823–828

    PubMed  Google Scholar 

  25. Atlas SW, Thulborn KR (1998) MR detection of hyperacute parenchymal hemorrhage of the brain. AJNR Am J Neuroradiol 19:1471–1477

    PubMed  Google Scholar 

  26. Liang L, Korogi Y, Sugahara T, et al. (1999) Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol 20:1527–1534

    PubMed  Google Scholar 

  27. Kinoshita T, Okudera T, Tamura H, Ogawa T, Hatazawa J (2000) Assessment of lacunar hemorrhage associated with hypertensive stroke by echo-planar gradient-echo T2*-weighted MRI. Stroke 31:1646–1650

    PubMed  Google Scholar 

  28. Atlas SW, DuBois P, Singer MB, Lu D (2000) Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. AJNR Am J Neuroradiol 21:1190–1194

    PubMed  Google Scholar 

  29. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  Google Scholar 

  30. Maldjian JA, Listerud J, Moonis G, Siddiqi F (2001) Computing diffusion rates in T2-dark hematomas and areas of low T2 signal. AJNR Am J Neuroradiol 22:112–128

    PubMed  Google Scholar 

  31. Lin DD, Filippi CG, Steever AB, Zimmerman RD (2001) Detection of intracranial hemorrhage: comparison between gradient-echo images and b(0) images obtained from diffusion-weighted echo-planar sequences. AJNR Am J Neuroradiol 22:1275–1281

    PubMed  Google Scholar 

  32. Hermier M, Nighoghossian N, Derex L, et al. (2001) MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 43:809–815

    Article  PubMed  Google Scholar 

  33. Kang BK, Na DG, Ryoo JW, Byun HS, Roh HG, Pyeun YS (2001) Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol 2:183–191

    PubMed  Google Scholar 

  34. Atlas SW, Thulborn KR (2002) Intracranial hemorrhage. In: Magnetic resonance imaging of the brain and spine. Lippincott Williams & Wilkins, Philadelphia, pp 773–832

    Google Scholar 

  35. Latour LL, Svoboda K, Mitra PP, Sotak CH (1994) Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA 91:1229–1233

    PubMed  Google Scholar 

  36. Does MD, Zhong J, Gore JC (1999) In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 41:236–240

    Article  PubMed  Google Scholar 

  37. Harrison PM, Fischbach FA, Hoy TG, Haggis GH (1967) Ferric oxyhydroxide core of ferritin. Nature 216:1188–1190

    PubMed  Google Scholar 

  38. Munro HN, Linder MC (1978) Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol Rev Apr; 58(2):317–396

    Google Scholar 

  39. Chakeres DW, Bryan RN (1986) Acute subarachnoid hemorrhage: in vitro comparison of magnetic resonance and computed tomography. AJNR Am J Neuroradiol 7:223–228

    PubMed  Google Scholar 

  40. Jenkins A, Hadley DM, Teasdale GM, Condon B, Macpherson P, Patterson J (1988) Magnetic resonance imaging of acute subarachnoid hemorrhage. J Neurosurg 68:731–736

    PubMed  Google Scholar 

  41. Satoh S, Kadoya S (1988) Magnetic resonance imaging of subarachnoid hemorrhage. Neuroradiology 30:361–366

    Article  PubMed  Google Scholar 

  42. Atlas SW (1993) MR imaging is highly sensitive for acute subarachnoid hemorrhage … not! Radiology 186:319–322

    PubMed  Google Scholar 

  43. Ogawa T, Uemura K (1993) MR imaging is highly sensitive for acute subarachnoid hemorrhage … not! Reply. Radiology 186:323

    Google Scholar 

  44. Ogawa T, Inugami A, Shimosegawa E, et al. (1993) Subarachnoid hemorrhage: evaluation with MR imaging. Radiology 186:345–351

    PubMed  Google Scholar 

  45. Griffiths PD, Wilkinson ID, Mitchell P, et al. (2002) Multimodality MR imaging depiction of hemodynamic changes and cerebral ischemia in subarachnoid hemorrhage. AJNR Am J Neuroradiol 22:1690–1697

    Google Scholar 

  46. Noguchi K, Ogawa T, Inugami A, Toyoshima H, Okudera T, Uemura K (1994) MR of acute subarachnoid hemorrhage: a preliminary report of fluid-attenuated inversion-recovery pulse sequences. AJNR Am J Neuroradiol 15:1940–1943

    PubMed  Google Scholar 

  47. Noguchi K, Ogawa T, Inugami A, et al. (1995) Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 196:773–777

    PubMed  Google Scholar 

  48. Noguchi K, Ogawa T, Seto H, et al. (1997) Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology 203(1):257–262

    PubMed  Google Scholar 

  49. Noguchi K, Seto H, Kamisaki Y, Tomizawa G, Toyoshima S, Watanabe N (2000) Comparison of fluid-attenuated inversion-recovery MR imaging with CT in a simulated model of acute subarachnoid hemorrhage. AJNR Am J Neuroradiol 21:923–927

    PubMed  Google Scholar 

  50. Melhem ER, Jara H, Eustace S (1997) Fluid-attenuated inversion recovery MR imaging: identification of protein concentration thresholds for CSF hyperintensity. AJR Am J Roentgenol 169:859–862

    PubMed  Google Scholar 

  51. Singer MB, Atlas SW, Drayer BP (1998) Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging — blinded reader study. Radiology 208:417–422

    PubMed  Google Scholar 

  52. Dechambre SD, Duprez T, Grandin CB, Lecouvet FE, Peeters A, Cosnard G (2000) High signal in cerebrospinal fluid mimicking subarachnoid haemorrhage on FLAIR following acute stroke and intravenous contrast medium. Neuroradiology 42:608–611

    Article  PubMed  Google Scholar 

  53. Taoka T, Yuh WT, White ML, Quets JP, Maley JE, Ueda T (2001) Sulcal hyperintensity on fluid-attenuated inversion recovery mr images in patients without apparent cerebrospinal fluid abnormality. AJR Am J Roentgenol 176:519–524

    PubMed  Google Scholar 

  54. Wiesmann M, Mayer TE, Yousry I, Medele R, Hamann GF, Bruckmann H (2002) Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg 96:684–689

    PubMed  Google Scholar 

  55. Busch E, Beaulieu C, de Crespigny A, Moseley ME (1998) Diffusion MR imaging during acute subarachnoid hemorrhage in rats. Stroke 29:2155–2161

    PubMed  Google Scholar 

  56. Rordorf G, Koroshetz WJ, Copen WA, et al. (1999) Diffusion-and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 30:599–605

    PubMed  Google Scholar 

  57. Domingo Z, Bradley JK, Blamire AM, Brindle K, Styles P, Rajagopalan B (2000) Diffusion weighted imaging and magnetic resonance spectroscopy in a low flow ischaemia model due to endothelin induced vasospasm. NMR Biomed 13:154–162

    Article  PubMed  Google Scholar 

  58. Condette-Auliac S, Bracard S, Anxionnat R, et al. (2001) Vasospasm after subarachnoid hemorrhage: interest in diffusion-weighted MR imaging. Stroke 32:1818–1824

    PubMed  Google Scholar 

  59. Hadeishi H, Suzuki A, Yasui N, Hatazawa J, Shimosegawa E (2002) Diffusion-weighted magnetic resonance imaging in patients with subarachnoid hemorrhage. Neurosurgery 50:741–747

    Article  PubMed  Google Scholar 

  60. Leclerc X, Fichten A, Gauvrit JY, et al. (2002) Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 44:610–616

    Article  PubMed  Google Scholar 

  61. Fobben ES, Grossman RI, Atlas SW, Hackney DB, Goldberg HI, Zimmerman RA, Bilaniuk LT (1989) MR characteristics of subdural hematomas and hygromas at 1.5 T. AJR Am J Roentgenol 153:589–595

    PubMed  Google Scholar 

  62. Ebisu T, Naruse S, Horikawa Y, Tanaka C, Higuchi T (1989) Nonacute subdural hematoma: fundamental interpretation of MR images based on biochemical and in vitro MR analysis. Radiology 171:449–453

    PubMed  Google Scholar 

  63. Wilms G, Marchal G, Geusens E, et al. (1992) Isodense subdural haematomas on CT: MRI findings. Neuroradiology 34:497–499

    Article  PubMed  Google Scholar 

  64. Ashikaga R, Araki Y, Ishida O (1997) MRI of head injury using FLAIR. Neuroradiology 39:239–242

    PubMed  Google Scholar 

  65. Williams VL, Hogg JP (2000) Magnetic resonance imaging of chronic subdural hematoma. Neurosurg Clin N Am Jul;11(3):491–498

    PubMed  Google Scholar 

  66. Tsui EY, Fai Ma K, Cheung YK, Chan JH, Yuen MK (2000) Rapid spontaneous resolution and redistribution of acute subdural hematoma in a patient with chronic alcoholism: a case report. Eur J Radiol 36:53–57

    Article  PubMed  Google Scholar 

  67. Lee Y, Lee KS, Hwang DH, Lee IJ, Kim HB, Lee JY (2001) MR imaging of shaken baby syndrome manifested as chronic subdural hematoma. Korean J Radiol 2:171–174

    PubMed  Google Scholar 

  68. Biousse V, Suh DY, Newman NJ, Davis PC, Mapstone T, Lambert SR (2002) Diffusion-weighted magnetic resonance imaging in Shaken Baby Syndrome. Am J Ophthalmol Feb;133(2):249–255

    Article  PubMed  Google Scholar 

  69. Mesiwala AH, Goodkin R (2002) Reversible ischemia detected by diffusion-weighted magnetic resonance imaging. Case illustration. J Neurosurg 97:230

    PubMed  Google Scholar 

  70. Bakshi R, Kamran S, Kinkel PR, et al. (1999) MRI in cerebral intraventricular hemorrhage: analysis of 50 consecutive cases. Neuroradiology 41:401–409

    Article  PubMed  Google Scholar 

  71. Bakshi R, Kamran S, Kinkel PR, et al. (1999) Fluid-attenuated inversion-recovery MR imaging in acute and subacute cerebral intraventricular hemorrhage. AJNR Am J Neuroradiol 20:629–636

    PubMed  Google Scholar 

  72. Nakai Y, Hyodo A, Yanaka K, Nose T (2002) Fatal cerebral infarction after intraventricular hemorrhage in a pregnant patient with moyamoya disease. J Clin Neurosci 9:456–458

    Article  PubMed  Google Scholar 

  73. Scott M (1975) Spontaneous intracerebral hematoma caused by cerebral neoplasms. Report of eight verified cases. J Neurosurg 42:338–342

    PubMed  Google Scholar 

  74. Mandybur TI (1977) Intracranial hemorrhage caused by metastatic tumors. Neurology 27:650–655

    PubMed  Google Scholar 

  75. Little JR, Dial B, Belanger G, Carpenter S (1979) Brain hemorrhage from intracranial tumor. Stroke 10:283–288

    PubMed  Google Scholar 

  76. Zimmerman RA, Bilaniuk LT (1980) Computed tomography of acute intratumoral hemorrhage. Radiology 135: 355–359

    PubMed  Google Scholar 

  77. Leeds NE, Elkin CM, Zimmerman RD (1984) Gliomas of the brain. Semin Roentgenol 19:27–43

    PubMed  Google Scholar 

  78. Atlas SW, Grossman RI, Gomori JM, et al. (1987) Hemorrhagic intracranial malignant neoplasms: spin-echo MR imaging. Radiology 164:71–77

    PubMed  Google Scholar 

  79. Brunereau L, Labauge P, Tournier-Lasserve E, Laberge S, Levy C, Houtteville JP (2000) Familial form of intracranial cavernous angioma: MR imaging findings in 51 families. French Society of Neurosurgery. Radiology 214:209–216

    PubMed  Google Scholar 

  80. Tagle P, Huete I, Mendez J, del Villar S (1986) Intracranial cavernous angioma: presentation and management. J Neurosurg 64:720–723

    PubMed  Google Scholar 

  81. Zabramski JM, Wascher TM, Spetzler RF, et al. (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432

    PubMed  Google Scholar 

  82. Gomori JM, Grossman RI, Goldberg HI, Hackney DB, Zimmerman RA, Bilaniuk LT (1986) Occult cerebral vascular malformations: high-field MR imaging. Radiology 158: 707–713

    PubMed  Google Scholar 

  83. Sigal R, Krief O, Houtteville JP, Halimi P, Doyon D, Pariente D (1990) Occult cerebrovascular malformations: follow-up with MR imaging. Radiology 176:815–819

    PubMed  Google Scholar 

  84. Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Intracranial Hemorrhage. In: Diffusion-Weighted MR Imaging of the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26386-1_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-26386-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25359-4

  • Online ISBN: 978-3-540-26386-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics