Advertisement

Neutrinoless Double Beta Decay — and Hot Dark Matter

  • H.V. Klapdor-Kleingrothaus

Abstract

Nuclear double beta decay provides an extraordinarly broad potential to search for beyond-standard-model physics. The occurrence of the neutrinoless decay (0νββ) mode has fundamental consequences: first total lepton number is not conserved, and second, the neutrino is a Majorana particle. Further the effective mass measured allows to put an absolute scale of the neutrino mass spectrum. In addition, double beta experiments yield sharp restrictions also for other beyond standard model physics. These include SUSY models (R-parity breaking and conserving), leptoquarks (leptoquark-Higgs coupling), compositeness, left-right symmetric models (right-handeld W boson mass), test of special relativity and of the equivalence principle in the neutrino sector and others. First evidence for neutrinoless double beta decay was given in 2001, by the HEIDELBERG-MOSCOW experiment. The HEIDELBERG-MOSCOW experiment is the by far most sensitive 0νββ experiment since more than 10 years. It is operating 11kg of enriched 76Ge in the GRAN SASSO Underground Laboratory. The analysis of the data taken from 2 August 1990–20 May 2003, is presented here. The collected statistics is 71.7 kg y. The background achieved in the energy region of the Q value for double beta decay is 0.11 events/ kg y keV. The two-neutrino accompanied half-life is determined on the basis of more than 100 000 events to be (1.74. −0.16 +0.18 ) × 1021 years. The confidence level for the neutrinoless signal is 4.2 σ level (more than 5 σ in the pulse-shape-selected spectrum). The half-life is \(T_{1/2}^{0v}\)=(1.19 −0.23 +0.37 ) × 1025 years. The effective neutrino mass deduced is (0.2–0.6) eV (99.73% c.l.), with the consequence that neutrinos have degenerate masses, and consequently still considerably, and contribute to hot dark matter in the Universe. The sharp boundaries for other beyond SM physics, mentioned above, are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Some discussion is given on future ββ experiments.

Keywords

Neutrino Mass Neutrinoless Double Beta Decay Nuclear Matrix Element Neutrino Mass Spectrum Standard Model Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz et al., Phys. Lett. B 586 (2004) 198–212.CrossRefADSGoogle Scholar
  2. 2.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina et al., Nucl. Instr. Meth. A 522 (2004) 371–406.CrossRefADSGoogle Scholar
  3. 3.
    H.V. Klapdor-Kleingrothaus, in Proc. of BEYOND03, Castle Ringberg, Germany, 9–14 June 2003, Springer (2004), ed. H.V. Klapdor-Kleingrothaus, 307–364.Google Scholar
  4. 4.
    H.V. Klapdor-Kleingrothaus et al. hep-ph/0201231 and Mod. Phys. Lett. A 16 (2001) 2409–2420.CrossRefADSGoogle Scholar
  5. 5.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Part. and Nucl. 110 (2002) 57–79.Google Scholar
  6. 6.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Foundations of Physics 31 (2002) 1181–1223 and Corrigenda, 2003 home-page: http://www.mpi-hd.mpg.de/non acc/main results.html.CrossRefGoogle Scholar
  7. 7.
    H.V. Klapdor-Kleingrothaus et al., hep-ph/0205228Google Scholar
  8. 8.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, hep-ph/0302248 and in Proc. of DARK2002, 4th Int. Heidelberg Conf., International Heidelberg Conference on Dark Matter in Astro and Particle Physics, Cape Town, South Africa, 4–9 Feb 2002, Springer, Heidelberg (2002), eds. by H.V. Klapdor-Kleingrothaus, R.D. Viollier, 404–411.Google Scholar
  9. 9.
    H.V. Klapdor-Kleingrothaus, Proposal, MPI-1987-V17, September 1987.Google Scholar
  10. 10.
    HEIDELBERG-MOSCOW Coll., Phys. Rev. D 55 (1997) 54.CrossRefGoogle Scholar
  11. 11.
    H.V. Klapdor-Kleingrothaus et al., (HEIDELBERG-MOSCOW Coll.), Eur. Phys. J. A 12 (2001) 147 and hep-ph/0103062, in Proc. of 3-rd Int. Conf. Proceedings, Third International Conference on Dark Matter in Astro-and Particle Physics, DARK2000, H.V. Klapdor-Kleingrothaus, ed., (Springer, Heidelberg, 2001) pp. 520–533.CrossRefADSGoogle Scholar
  12. 12.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Ch. Dörr, C. Tomei, Nucl. Instr. Meth. 510 A (2003) 281–289 and hep-ph/0308275.ADSGoogle Scholar
  13. 13.
    H.V. Klapdor-Kleingrothaus et al., Nucl. Instr. Meth. A 511 (2003) 335–340 and hep-ph/0309157.CrossRefADSGoogle Scholar
  14. 14.
    D. Caldwell, J. Phys. G 17 (1991) S137–S144.CrossRefADSGoogle Scholar
  15. 15.
    A.A. Vasenko et al., Mod. Phys. Lett. A 5 (1990) 1299, and I. Kirpichnikov, Preprint ITEP (1991).CrossRefADSGoogle Scholar
  16. 16.
    C.E. Aalseth et al., Phys. Rev. D 65 (2002) 092007.CrossRefADSGoogle Scholar
  17. 17.
    H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, Phys. Rev. D 70 (2004) 078301.CrossRefADSGoogle Scholar
  18. 18.
    Ch. Dörr, H.V. Klapdor-Kleingrothaus, Nucl. Instr. Meth. A 513 (2003) 596–621.CrossRefADSGoogle Scholar
  19. 19.
    H.V. Klapdor-Kleingrothaus et al., Phys. Lett. 578 B (2004) 54–62 and Nucl. Instr. Meth. A 510 (2003) 281–289.ADSGoogle Scholar
  20. 20.
    H.V. Klapdor-Kleingrothaus, CERN Courier 43 N6 (2003) 9 and hepph/0307329, “‘Naked’ Crystals go Underground”.Google Scholar
  21. 21.
    H.V. Klapdor-Kleingrothaus et al., Nucl. Instr. Meth. A 511 (2003) 341–346.CrossRefADSGoogle Scholar
  22. 22.
    C. Tomei, A. Dietz, I. Krivosheina, H.V. Klapdor-Kleingrothaus, Nucl. Instr. Meth. A 508 (2003) 343–352.CrossRefADSGoogle Scholar
  23. 23.
    H.V. Klapdor-Kleingrothaus, C. Tomei, I. Krivosheina et al., Nucl. Instr. Meth. A 530 (2004) 410–418.CrossRefADSGoogle Scholar
  24. 24.
    A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus, Eur. Lett. 13 (1990) 31.ADSCrossRefGoogle Scholar
  25. 25.
    K. Muto, E. Bender, H.V. Klapdor, Z. Phys. A 334 (1989) 187.ADSGoogle Scholar
  26. 26.
    H.V. Klapdor-Kleingrothaus et al., in preparation.Google Scholar
  27. 27.
    H.V. Klapdor-Kleingrothaus, H. Päs, A.Yu. Smirnov, Phys. Rev. D 63 (2001) 073005; and hep-ph/0003219; in Proc. of DARK’2000, Heidelberg, 10–15 July, 2000, Germany, ed. H.V. Klapdor-Kleingrothaus, Springer, Heidelberg (2001) 420–434.Google Scholar
  28. 28.
    H.V. Klapdor-Kleingrothaus, U. Sarkar, Mod. Phys. Lett. A 16 (2001) 2469–2482.CrossRefADSGoogle Scholar
  29. 29.
    H.V. Klapdor-Kleingrothaus, “60 Years of Double Beta Decay — From Nuclear Physics to Beyond the Standard Model”, World Scientific, Singapore (2001) 1281 pages.CrossRefGoogle Scholar
  30. 30.
    H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953.CrossRefADSGoogle Scholar
  31. 31.
    H.V. Klapdor-Kleingrothaus, Springer Tracts in Modern Physics, 163 (2000) 69–104, Springer-Verlag, Heidelberg, Germany (2000).Google Scholar
  32. 32.
    H.V. Klapdor-Kleingrothaus, U. Sarkar, hep-ph/0302237.Google Scholar
  33. 33.
    G. Douysset et al., Phys. Rev. Lett. 86 (2001) 4259–4262; J.G. Hykawy et al., Phys. Rev. Lett. 67 (1991) 1708; G. Audi, A.H. Wapstra, Nucl. Phys. A 595 (1995) 409–480; R.J. Ellis et al., Nucl. Phys. A 435 (1985) 34–42.CrossRefADSGoogle Scholar
  34. 34.
    M.D. Hannam, W.J. Thompson, Nucl. Instr. Meth. A 431 (1999) 239–251.CrossRefADSGoogle Scholar
  35. 35.
    E. der Mateosian, M. Goldhaber, Phys. Rev. 146 (1966) 810–815.CrossRefADSGoogle Scholar
  36. 36.
    D.V. Ahluwalia, in Proc. of Physics Beyond the Standard Model, Beyond the Desert 02, BEYOND’02, Oulu, Finland, 2–7 Juni, 2002, IOP, Bristol, 2003, ed. H.V. Klapdor-Kleingrothaus, 143–160; D.V. Ahluwalia, M. Kirchbach, Phys. Lett. B529 (2002) 124.Google Scholar
  37. 37.
    K. Muto, H.V. Klapdor, in “Neutrinos”, Graduate Texts in Contemporary Physics”, ed. H.V. Klapdor, Berlin, Germany: Springer (1988) 183–238.Google Scholar
  38. 38.
    K. Grotz, H.V. Klapdor, “Die Schwache Wechselwirkung in Kern-, Teilchenund Astrophysik”, B.G. Teubner, Stuttgart (1989), “The Weak Interaction in Nuclear, Particle and Astrophysics”, IOP Bristol (1990), Moscow, MIR (1992) and China (1998).Google Scholar
  39. 39.
    H.V. Klapdor-Kleingrothaus, A. Staudt, “Teilchenphysik ohne Beschleuniger”, B.G. Teubner, Stuttgart (1995), “Non-Accelerator Particle Physics”, IOP Publishing, Bristol and Philadelphia (1995) and 2. ed. (1998) and Moscow, Nauka, Fizmalit (1998).Google Scholar
  40. 40.
    H.V. Klapdor-Kleingrothaus, in Proc. of Intern. Conf. on Physics Beyond the Standard Model: Beyond the Desert 02, BEYOND’02, Oulu, Finland, 2–7 Jun. 2002, IOP, Bristol, 2003 ed. H.V. Klapdor-Kleingrothaus, 215–240 pp.Google Scholar
  41. 41.
    J. Schechter, J.W.F. Valle, Phys. Rev. D 25 (1982) 2951–2954.CrossRefADSGoogle Scholar
  42. 42.
    M. Hirsch, H.V. Klapdor-Kleingrothaus, Phys. Lett. B 398 (1997) 311; Phys. Rev. D 57 (1998) 1947; M. Hirsch, H.V. Klapdor-Kleingrothaus, St. Kolb, Phys. Rev. D 57 (1998) 2020.CrossRefADSGoogle Scholar
  43. 43.
    G. Bhattacharyya, H.V. Klapdor-Kleingrothaus, H. Päs, A. Pilaftsis, Phys. Rev. D 67 (2003) 113001 and hep-ph/0402071 in Proc. of Int. Worksh. on Astr. and HE Phys. (AHEP-2003), Valencia, Spain, 14–18 Oct 2003.CrossRefADSGoogle Scholar
  44. 44.
    Yu. Zdesenko et al., Phys. Lett. B 546 (2002) 206–215.CrossRefADSGoogle Scholar
  45. 45.
    E. Fiorini et al., Phys. Lett. B 25 (1967) 602.CrossRefADSGoogle Scholar
  46. 46.
    E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 011802; Erratum-ibid. 87 (2001) 159901 and hep-ph/0102255.CrossRefADSGoogle Scholar
  47. 47.
    K.S. Babu et al., Phys. Lett. B 552 (2003) 207–213.MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    E. Ma in Proc. of Intern. Conf. on Physics Beyond the Standard Model: Beyond the Desert 02, BEYOND’02, Oulu, Finland, 2–7 Jun. 2002, IOP, Bristol, 2003, and BEYOND 2003, Ringberg Castle, Tegernsee, Germany, 9–14 Juni 2003, Springer, Heidelberg, Germany, 2004, ed. H.V. Klapdor-Kleingrothaus.Google Scholar
  49. 49.
    R.N. Mohapatra, M.K. Parida, G. Rajasekaran, (2003) hep-ph/0301234.Google Scholar
  50. 50.
    D. Fargion et al., in Proc. of DARK2000, Heidelberg, Germany, July 10–15, 2000, Ed. H.V. Klapdor-Kleingrothaus, Springer, (2001) 455–468 and in Proc. of Beyond the Desert 2002, BEYOND02, Oulu, Finland, June 2002, IOP 2003, and BEYOND03, Ringberg Castle, Tegernsee, Germany, 9–14 Juni 2003, Springer, Heidelberg, Germany, 2003, ed. H.V. Klapdor-Kleingrothaus.Google Scholar
  51. 51.
    Z. Fodor, S.D. Katz, A. Ringwald, Phys. Rev. Lett. 88 (2002) 171101 and Z. Fodor et al., JHEP (2002) 0206:046, and in Proc. of Intern. Conf. on Physics Beyond the Standard Model: Beyond the Desert 02, BEYOND’02, Oulu, Finland, 2–7 Jun 2002, IOP, Bristol, 2003, ed. H V Klapdor-Kleingrothaus and hep-ph/0210123.CrossRefADSGoogle Scholar
  52. 52.
    H.V. Klapdor-Kleingrothaus, U. Sarkar, hep-ph/0304032, and in Mod. Phys. Letter. A18 (2003) 2243–2254.CrossRefADSMATHGoogle Scholar
  53. 53.
    H. Minakata, O. Yasuda, Phys. Rev. D 56 (1997) 1692.CrossRefADSGoogle Scholar
  54. 54.
    O. Yasuda, in Proc. of Int. Conf. BEYOND’99, Ringberg Castle, Germany, June 6–12, 1999, IOP, Bristol (2000), eds. H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, p.223.Google Scholar
  55. 55.
    I. Stancu, D.V. Ahluwalia, Phys. Lett. B 460 (1999) 431–436.CrossRefADSGoogle Scholar
  56. 56.
    S. Hannestad, CAP 0305 (2003) 920030 004, and astro-ph/0303076, in Proc. of 4th Int. Conf. on Particle Physics Beyond the Standard Model, BEYOND03, Ringberg Castle, Germany, 9–14 Juni 2003, Springer, Heidelberg, Germany, 2003, ed. H.V. Klapdor-Kleingrothaus.Google Scholar
  57. 57.
    S.W. Allen, R.W. Schmidt, S.L. Bridle, astro-ph/0306386.Google Scholar
  58. 58.
    K.S. Babu, E. Ma and J.W.F. Valle, Phys. Lett. B 552 (2003) 207–213.CrossRefADSGoogle Scholar
  59. 59.
    M. Hirsch et al., Phys. Rev. D69 (2004) 093006.CrossRefADSGoogle Scholar
  60. 60.
    A. Blanchard, M. Douspis, M. Rowan-Robinson, S. Sarkar, astro-ph/0304237.Google Scholar
  61. 61.
    H.V. Klapdor-Kleingrothaus in Proc. of BEYOND’97, Castle Ringberg, Germany, 8–14 June 1997, ed. by H.V. Klapdor-Kleingrothaus et al., IOP Bristol (1998) 485–531, and Int. J. Mod. Phys. A13 (1998) 3953.Google Scholar
  62. 62.
    H.V. Klapdor-Kleingrothaus, J. Hellmig et al., J. Phys. G24 (1998) 483–516.ADSGoogle Scholar
  63. 63.
    H.V. Klapdor-Kleingrothaus et al. MPI-Report MPI-H-V26-1999, hepph/9910205, in Proc. of the 2nd Int. Conf. on Particle Physics Beyond the Standard Model BEYOND’99, Castle Ringberg, Germany, 6–12 June 1999, eds. H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, IOP Bristol (2000) 915–1014.Google Scholar
  64. 64.
    G. Belanger et al., Phys. Rev. D53 (1996) 6292 and in Proc. of Lepton-Baryon Int. Conf., April 1998, Trento, IOP, Bristol, (1999), eds. H.V. Klapdor-Kleingrothaus and I.V. Krivosheina.CrossRefADSGoogle Scholar
  65. 65.
    O. Panella et al., Phys. Rev. D 62 (2000) 015013.CrossRefADSGoogle Scholar
  66. 66.
    M.N. Rebelo, Proc. of BEYOND’2003, Castle Ringberg, Germany, July 2003, ed. H.V. Klapdor-Kleingrothaus, Springer, Heidelberg (2004) 267.Google Scholar
  67. 67.
    H.V. Klapdor-Kleingrothaus, M. Hirsch, Z. Phys. A 359 (1997) 361–372.CrossRefADSGoogle Scholar
  68. 68.
    J. Hellmig, H.V. Klapdor-Kleingrothaus, Z. Phys. A 359 (1997) 351–359 and nucl-ex/9801004.CrossRefADSGoogle Scholar
  69. 69.
    T. Bernatowicz et al., Phys. Rev. C 47 (1993) 806 and Phys. Rev. Lett. 69 (1992) 2341.CrossRefADSGoogle Scholar
  70. 70.
    C. Brofferio, see Proc. International Conf. “Neutrino Telescopes”, Febr. 2005, Venice, Italy.Google Scholar
  71. 71.
    X. Sarazin (NEMO Collaboration), In Proc. of “Neutrino 2004”’ Intern. Conference, Paris, July 2005.Google Scholar
  72. 72.
    G. Gratta, ApPEC (Astroparticle Physics European Coordination), Paris, France 22.01.2002, and in Proc. Int. Works. on Low Energy Solar Neutrinos, of LowNu2, Dec. 4–5 (2000) Tokyo, Japan, ed: Y. Suzuki, World Scientific (2001) p.98.Google Scholar
  73. 73.
    R. Hofmann, hep-ph/0401017 v.1.Google Scholar
  74. 74.
    M. Tegmark et al., astro-ph/0310723, subm. Phys. Rev. D.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • H.V. Klapdor-Kleingrothaus
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations