From New Geometry Towards a New Symmetry. Reflexive Numbers and Berger Graphs from Calabi-Yau Spaces

  • L.N. Lipatov
  • A. Sabio Vera
  • V.N. Velizhanin
  • G.G. Volkov
Conference paper


Feynman Diagram Dynkin Diagram Holonomy Group Primary Graph Moody Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Berger, Sur les groupes d’holonomie des varietés a connexion affine et des variétés riemannienes, Bull. Soc. Math. France 83, (1955), 279–310.MATHMathSciNetGoogle Scholar
  2. 2.
    E. Calabi, On Kahler Manifolds with Vanishing Canonical Class, in Algebraic Geometry and Topology, A Symposium in Honor of S. Lefshetz, 1955 (Princeton University Press, Princeton, NJ (1957)).Google Scholar
  3. 3.
    S.-T. Yau, Calabi’s Conjecture and Some New Results in Algebraic Geometry, Proc. Nat. Acad. Sci. 74 (1977), 1798.MATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V. Batyrev, Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties, J. Algebraic Geom. 3 (1994) 493.MATHMathSciNetGoogle Scholar
  5. 5.
    M. Kreuzer and H. Skarke, Reflexive Polyhedra, Weights and Toric Calabi-Yau Fibrations, HUB-EP-00/03, TUW-00/01, math.AG/0001106, Rev. Mat. Phys. 14 (2002) 343–374.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Kreuze and H. Skarke, Complete classification of reflexive polyhedra in four dimensions, hep-th/0002240, Adv. Theor. Math. Phys. 4 (2002) 1209–1230; Reflexive polyhedra, weights and toric Calabi-Yau fibrations, math.AG/0001106, Rev. Math. Phys. 14 (2002) 343–374.Google Scholar
  7. 7.
    L. N. Lipatov, A. Sabio Vera, V. N. Velizhanin and G. G. Volkov, hepth/0501101.Google Scholar
  8. 8.
    F. Anselmo, J. Ellis, D. V. Nanopoulos and G. G. Volkov, Towards an Algebraic Classification of Calabi-Yau Manifolds I: Study of K3 Spaces, Phys. Part. Nucl. 32 (2001) 318–375 [Fiz. Elem. Chast. Atom. Yadra 32 (2001) 605–698] [arXiv:hep-th/0002102].Google Scholar
  9. 9.
    F. Anselmo, J. Ellis, D. V. Nanopoulos and G. G. Volkov, Results from an Algebraic Classification of Calabi-Yau Manifolds, Phys. Lett. B 499 (2001) 187–199 [arXiv:hep-th/0007115].MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    F. Anselmo, J. Ellis, D. V. Nanopoulos and G. G. Volkov, Universal Calabi-Yau Algebra: Towards an Unification of Complex Geometry, Int. J. Mod. Phys. A 18 (2003) 5541–5612 [arXiv:hep-th/0207188].MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    F. Anselmo, J. Ellis, D. V. Nanopoulos and G. G. Volkov, Universal Calabi-Yau algebra: Classification and enumeration of Fibrations, Mod. Phys. Lett. A 18 (2003) 699–710 [arXiv:hep-th/0212272].MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    P. Candelas and A. Font, Duality Between the Webs of Heterotic and Type II Vacua, Nucl. Phys. B511 (1998) 295.MathSciNetCrossRefADSMATHGoogle Scholar
  13. 13.
    M. Bershadsky, K. Intriligator, S. Kachru, D.R. Morrison, V. Sadov, and C. Vafa, Geometric Singularities and Enhanced Gauge Symmetries, Nucl. Phys. B481 (1996) 215.MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    E. Perevalov and H. Skarke, Enhanced Gauge Symmetry in Type II and F-Theory Compactifications: Dynkin Diagrams from Polyhedra, Nucl. Phys. B505 (1997) 679.MathSciNetCrossRefADSMATHGoogle Scholar
  15. 15.
    G. G. Volkov, Hunting for the new symmetries in Calabi-Yau jungles, Int. J. Mod. Phys. A 19 (2004) 4835 [arXiv:hep-th/0402042].MATHCrossRefADSGoogle Scholar
  16. 16.
    E. Torrente-Lujan and G. G. Volkov, Root Systems from Toric Calabi-Yau Geometry: Towards new Algebraic Structures and Symmetries in Physics?, hepth/0406035.Google Scholar
  17. 17.
    J. Ellis, E. Torrente-Lujan and G. G. Volkov, The Classification of the Simply Laced Berger Graphs from Calabi-Yau CY 3 spaces, hep-th/0806035.Google Scholar
  18. 18.
    L. Lipatov, A. Sabio-Vera, V. Velizhanin and G. G. Volkov, Reflexive Numbers and Berger Graphs from Calabi-Yau Spaces, To be published [arXiv:hepth/0501101].Google Scholar
  19. 19.
    R. K. Guy, Unsolved Problems in Number Theory, D11 Springer (1994), 44–139, Egyptian fractions: 1, 1, 3, 14, 147, 3462, 294314, 159330691.Google Scholar
  20. 20.
    F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge (1998), 41–209, Sequence: 1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993.Google Scholar
  21. 21.
    A. Capelli, C. Itzykson and J.-B. Zuber, The ADE classification of Minimal and A 1(1) Conformal Invariant Theories, Commun. Math. Phys.184 (1987), 1–26, MR 89 b, 81178.CrossRefADSGoogle Scholar
  22. 22.
    P. Di-Francesco and J.-B. Zuber, SU(N) Lattice Integrable Models Associated with Graphs, Nucl.Phys. B 338 (1990), 602–646.MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    F. Klein, The Icosahedron and the Solution of Equations of Fifth Degree, Dover, New York, 1956.MATHGoogle Scholar
  24. 24.
    P. Du Val, Homographies, Quaternions and Rotations (Clarendon Press, Oxford (1964)).MATHGoogle Scholar
  25. 25.
    A. Beauville, Riemannian Holonomy and Algebraic Geometry, math.AG/9902110.Google Scholar
  26. 26.
    R. Bryant Recent advances in the theory of holonomy, math.DG/9910059, Seminaire Bourbaki, Volume 1998/99, Asterisque 266 (2000), 351–374.MathSciNetGoogle Scholar
  27. 27.
    Lipatov L.N. High energy asymptotics of multi-colour QCD and exactly solvable lattice models, Padova preprint DFPD/93/TH, hep-th/9311037, unpublished.Google Scholar
  28. 28.
    Lipatov L.N. Nucl.Phys. B548 (1999) 328. duality symmetry of reggeon interactions in multicolour qcdCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • L.N. Lipatov
    • 1
  • A. Sabio Vera
    • 2
  • V.N. Velizhanin
    • 1
  • G.G. Volkov
    • 1
    • 3
    • 4
    • 5
    • 6
  1. 1.Petersburg Nuclear Physics Institute, GatchinaSt. PetersburgRussia
  2. 2.II. Institut für Theoretische PhysikUniversität HamburgHamburg
  3. 3.Instituto de Física Teórica UAM/CSIC, C-XVIUniversidad Autónoma de MadridMadridSpain
  4. 4.Laboratoire d’Annecy-Le-Vieux de Physique ThéoriqueLAPTH (CNRS UMR 5108)Annecy-Le-VieuxFrance
  5. 5.Theory Division, Physics DepartmentCERNGeneva 23Switzerland
  6. 6.Departamento de Física Teórica C-XIUniversidad Autónoma de MadridMadridSpain

Personalised recommendations