How Can We Make Sure We Detect Dark Matter?

  • Paolo Gondolo


More and more claims of having detected WIMP dark matter are being put forward. Some are discussed here, stressing the importance of exploiting distinctive signatures to ascertain their WIMP origin. The best signals for WIMP discovery are characterized by special features that make them recognizable as due to WIMPs and nothing else. Sometimes, however, a single feature, although accountable for in theoretical models, may not be enough to make sure that we have detected WIMPs. This is because the theory of WIMPs and their distribution in the galaxy is still very uncertain, and allows for many possibilities. What are needed are experimental verifications of the claimed signals, either by discovering unmistakable features, or by detecting several kinds of signals that can all be explained by the same WIMP model.


Dark Matter Direct Detection Experiment Wimp Mass Halo Model Dark Matter WIMPs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Bennett et al.: Astrophys. J. Suppl. 148, 1 (2003)CrossRefADSGoogle Scholar
  2. 2.
    M. A. DuVernois et al.: Astrophys. J. 559 296 (2001)CrossRefADSGoogle Scholar
  3. 3.
    S. D. Hunter et al.: Astrophys. J. 481 205 (1997)CrossRefADSGoogle Scholar
  4. 4.
    A. W. Strong, I. V. Moskalenko, O. Reimer: Astrophys. J. 613 962 (2004)CrossRefADSGoogle Scholar
  5. 5.
    E. A. Baltz, J. Edsjö, K. Freese, P. Gondolo: Phys. Rev. D65, 063511 (2002)CrossRefADSGoogle Scholar
  6. 6.
    M. Srednicki, S. Theisen, J. Silk, Phys. Rev. Lett. 56, 236 (1986); 56, 1883 (1986); S. Rudaz, Phys. Rev. Lett. 56, 2128 (1986)CrossRefGoogle Scholar
  7. 7.
    GLAST Science Brochure (March 2001) []Google Scholar
  8. 8.
    K. Tsuchiya et al.: Astrophys. J. Lett. 606, 115 (2004)CrossRefADSGoogle Scholar
  9. 9.
    D. Hooper et al.: JCAP 09, 002 (2004)ADSGoogle Scholar
  10. 10.
    See, e.g., F. Aharonian, A. Neronov: astro-ph/0408303 (2004)Google Scholar
  11. 11.
    F. Aharonian et al.: Astron. Astrophys. Lett. 425, 13 (2004)CrossRefADSGoogle Scholar
  12. 12.
    D. Horns: astro-ph/0408192 (2004)Google Scholar
  13. 13.
    J. Hall, E. A. Baltz, P. Gondolo, in preparation.Google Scholar
  14. 14.
    A. K. Drukier, K. Freese, D. N. Spergel: Phys. Rev. D33, 3495 (1986); K. Freese, J. A. Frieman, A. Gould: Phys. Rev. D37, 3388 (1988)CrossRefADSGoogle Scholar
  15. 15.
    G. Gelmini, P. Gondolo: Phys. Rev. D64, 023504 (2001)CrossRefADSGoogle Scholar
  16. 16.
    R. Bernabei et al.: Riv. Nuovo Cim. 26N1, 1 (2003) [astro-ph/0307403]Google Scholar
  17. 17.
    P. Gondolo: lectures at the NATO Advanced Study Institute “Frontiers of the Universe”, Cargese, France (2003) [astro-ph/0403064]Google Scholar
  18. 18.
    P. Belli: presented at TAUP 97, LNGS, Italy [published in R. Bernabei et al., Nucl. Phys. B (Proc. Suppl.) 70 (1999) 79]; R. Bernabei et al.: Phys. Lett. B480, 23 (2000)Google Scholar
  19. 19.
    D. S. Akerib et al.: Phys. Rev. Lett. 93, 211301 (2004)CrossRefADSGoogle Scholar
  20. 20.
    C. Savage, P. Gondolo, K. Freese: Phys. Rev. D70, 123513 (2004)CrossRefADSGoogle Scholar
  21. 21.
    D. P. Snowden-Ifft, C. J. Martoff, J.M. Burwell: Phys. Rev. D61, 1 (2000); G. J. Alner et al.: Nucl. Instrum. Meth. A535, 644 (2004) and references therein.CrossRefGoogle Scholar
  22. 22.
    K. Freese, P. Gondolo, H. J. Newberg, M. Lewis: Phys. Rev. Lett. 92, 111301 (2004); K. Freese, P. Gondolo, H. J. Newberg: astro-ph/0309279 (2003)CrossRefADSGoogle Scholar
  23. 23.
    G. Gelmini, P. Gondolo: hep-ph/0405278 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Gondolo
    • 1
  1. 1.Department of PhysicsUniversity of UtahSalt Lake City

Personalised recommendations