Light Neutralino Dark Matter in Gaugino Non-Universal Models

  • Nicolao Fornengo
Conference paper


We examine the cosmology and the astrophysical signals produced by neutralino dark matter in the frame of an effective MSSM model without gauginomass unification at a grand unification scale. As a consequence of the recent data on precision cosmology, we can set an absolute lower bound of 6 GeV on the neutralino mass. This limit changes to 25 GeV if the pseudoscalar higgs is heavier than 180 GeV. The light neutralinos allowed in this class of supersymmetric models provide quite sizeable direct detection rates. We show how they compare to the direct detection esperimental sensitivites: the predicted rates are largely compatible with the annual-modulation data of the DAMA Collaboration; the comparison with the upper bounds of the CDMS and EDELWEISS Collaborations shows that limits for neutralino masses below 25–30 GeV can be set for a standard isothermal halo. As for the annihilation signals, we find that only low-energy antiprotons and antideuterons are potentially able to set constraints on very low-mass neutralinos, below 20–25 GeV. The gamma-ray signal requires significantly steep profiles or substantial clumpiness in order to reach detectable levels. The up-going muon signal at neutrino telescopes is largely below experimental sensitivities for the neutrino flux coming from the Sun, while for the flux from the Earth an improvement of about one order of magnitude in experimental sensitivities with a low energy threshold can make accessible neutralino masses close to O, Si and Mg masses, for which resonant capture is operative.


Dark Matter Cold Dark Matter Light Neutralinos Galactic Halo Neutralino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 67, 063519 (2003).CrossRefADSGoogle Scholar
  2. 2.
    A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 68, 043506 (2003).CrossRefADSGoogle Scholar
  3. 3.
    A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 69, 037302 (2003).CrossRefADSGoogle Scholar
  4. 4.
    A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys.Rev. D 70, 015005 (2004).CrossRefADSGoogle Scholar
  5. 5.
    D.N. Spergel et al. (WMAP), Astrophys.J.Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  6. 6.
    T.J. Pearson et al. (CBI), Astrophys. J. 591, 556 (2003)CrossRefADSGoogle Scholar
  7. 7.
    C.L. Kuo et al. (ACBAR), Astrophys. J. 600, 32 (2004).CrossRefADSGoogle Scholar
  8. 8.
    W.J. Percival et al., MNRAS 327, 1297 (2001).CrossRefADSGoogle Scholar
  9. 9.
    R.A.C. Croft et al., ApJ 581, 20 (2002); N.Y. Gnedin and A.J.S. Hamilton, MNRAS 334, 107 (2002).CrossRefADSGoogle Scholar
  10. 10.
    For older determinations, see: K. Griest and L. Roszkowski, Phys. Rev. D 46, 3309 (1992); A. Gabutti, M. Olechowski, S. Cooper, S. Pokorski and L. Stodolsky, Astrop. Phys. 6, 1 (1996); V. A. Bednyakov, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, Phys.Rev. D 55, 503 (1997).CrossRefADSGoogle Scholar
  11. 11.
    G. Bélanger, F. Boudjema, A. Pukhov and S. Rosier-Lees, Proceedings of SUSY02, Hamburg, Germany, June 17–23, 2002 [hep-ph/0212227].Google Scholar
  12. 12.
    D. Hooper and T. Plehn, Phys. Lett. B562, 18 (2003).CrossRefADSGoogle Scholar
  13. 13.
    R. Bernabei et al., Riv. N. Cim. 26 n. 1 (2003) 1.MathSciNetGoogle Scholar
  14. 14.
    P. Belli, R. Cerulli, N. Fornengo and S. Scopel, Phys. Rev. D 66, 043503 (2002).CrossRefADSGoogle Scholar
  15. 15.
    D.S. Akerib et al., Phys. Rev. Lett. 93 (2004) 211301.CrossRefADSGoogle Scholar
  16. 16.
    A. Benoit et al., Phys. Lett. B 545, 43 (2002).CrossRefADSGoogle Scholar
  17. 17.
    A. Habig [Super-Kamiokande Collaboration], Proceedings of the 27th International Cosmic Ray Conferences (ICRC 2001), Hamburg, Germany, August 7–15, 2001 [hep-ex/0106024].Google Scholar
  18. 18.
    M. Ambrosio et al. [MACRO Collaboration], Phys. Rev. D 60, 082002 (1999).CrossRefADSGoogle Scholar
  19. 19.
    X. Bai et al. [AMANDA Collaboration], Proceedings of the 28th International Cosmic Ray Conferences (ICRC 2003), Tsukuba, Japan, 31 Jul–7 Aug 2003.Google Scholar
  20. 20.
    M.M. Boliev et al., Proceedings of the International Workshop on Aspects of Dark Matter in Astrophysics and Particle Physics, Heidelberg, Germany, 16–20 Sep 1996.Google Scholar
  21. 21.
    S.D. Hunter et al., Astrophys. J. 481, 205 (1997).CrossRefADSGoogle Scholar
  22. 22.
    J.F. Navarro, C.S. Frenk and S.D.M. White, Astrophys. J. 462, 563 (1996).CrossRefADSGoogle Scholar
  23. 23.
    B. Moore et al., Mon. Not. Roy. Astron. Soc. 310, 1147 (1999).CrossRefADSGoogle Scholar
  24. 24.
    F. Donato, N. Fornengo, and P. Salati, Phys. Rev. D 62, 043003 (2000).CrossRefADSGoogle Scholar
  25. 25.
    F. Donato, N. Fornengo, D. Maurin, P. Salati, R. Taillet, Phys. Rev. D 69, 063501 (2003).CrossRefADSGoogle Scholar
  26. 26.
    S. Orito, et al. (BESS Collaboration), Phys. Rev. Lett. 84, 1078 (2000).CrossRefADSGoogle Scholar
  27. 27.
    T. Maeno, et al. (BESS Collaboration), Astropart. Phys. 16, 121 (2001).CrossRefADSGoogle Scholar
  28. 28.
    F. Donato et al., Astrophys. J. 563, 172 (2001).CrossRefADSGoogle Scholar
  29. 29.
    S. Ahlen et al., Nucl. Inst. Meth. A350, 351 (1994).CrossRefADSGoogle Scholar
  30. 30.
    K. Mori et al. Ap. J. 566, 604 (2002).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolao Fornengo
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of Torino and INFN - Sezione di TorinoTorinoItaly

Personalised recommendations