Advertisement

Intrinsically Faint Quasars: Evidence for meV Axion Dark Matter in the Universe

  • Anatoly A. Svidzinsky
Conference paper

Summary

Growing amount of observations indicate presence of intrinsically faint quasar subgroup (a few % of known quasars) with noncosmological quantized redshift. Here we find an analytical solution of Einstein equations describing bubbles made from axions with periodic interaction potential. Such particles are wellmotivated cold dark matter candidate. The bubble interior possesses equal gravitational redshift which can have any value between zero and infinity. Quantum pressure supports the bubble against collapse and yields states stable on the scale more then hundreds million years. Our results explain the observed quantization of quasar redshift and suggest that intrinsically faint point-like quasars associated with nearby galaxies are axionic bubbles with masses 108–109M and radii 103–104 R . They are born in active galaxies and ejected into surrounding space. Properties of such quasars unambiguously indicate presence of axion dark matter in the Universe and yield the axion mass m ≈ 1 meV, which fits in the open axion mass window constrained by astrophysical and cosmological arguments.

Keywords

Dark Matter Bubble Surface Nearby Galaxy Active Galaxy Bubble Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schmidt: Nature 197, 1040 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    H. Arp: Quasars, redshifts and controversies, (Interstellar Media, Berkeley 1987)Google Scholar
  3. 3.
    J.V. Narlikar: Space Sci. Rev. 50, 523 (1989)CrossRefADSGoogle Scholar
  4. 4.
    G.R. Burbidge et al.: ApJS 74, 675 (1990)CrossRefADSGoogle Scholar
  5. 5.
    G. Burbidge and A. Hewitt: In Variability of blazars, Eds E. Valtaoja and M. Valtonen (Cambridge University Press, Cambridge 1992), p 4Google Scholar
  6. 6.
    G. Burbidge: A&A, 309, 9 (1996)ADSGoogle Scholar
  7. 7.
    N. Benitez and E. Martinez-Gonzalez: ApJ 477, 27 (1997)CrossRefADSGoogle Scholar
  8. 8.
    H. Arp: Seeing red: redshifts, cosmology and academic science, (Apeiron, Montreal 1998)Google Scholar
  9. 9.
    E.M. Burbidge, G. Burbidge, H. Arp and S. Zibetti: ApJ 591, 690 (2003)CrossRefADSGoogle Scholar
  10. 10.
    H. Arp, E.M. Burbidge and G. Burbidge: A&A 414, L37 (2004)CrossRefADSGoogle Scholar
  11. 11.
    H. Arp, C.M. Gutiérrez and M. López-Corredoira: A&A 418, 877 (2004)CrossRefADSGoogle Scholar
  12. 12.
    H. Arp et al.: A&A 391, 833 (2002)CrossRefADSGoogle Scholar
  13. 13.
    P. Galianni et al.: prepint astro-ph/0409215Google Scholar
  14. 14.
    K.G. Karlsson: A&A 239, 50 (1990)ADSGoogle Scholar
  15. 15.
    H. Arp, H.G. Bi, Y. Chu and X. Zhu: A&A 239, 33 (1990)ADSGoogle Scholar
  16. 16.
    G. Burbidge and W.M. Napier: AJ 121, 21 (2001)CrossRefADSGoogle Scholar
  17. 17.
    E. Hawkins, S.J. Maddox and M.R. Merrifield: MNRAS 336, L13 (2002)CrossRefADSGoogle Scholar
  18. 18.
    C.T. Hill and G.G. Ross: Nucl. Phys.B311, 253 (1988)CrossRefADSGoogle Scholar
  19. 19.
    R. Bradley et al.: Rev. Mod. Phys. 75, 777 (2003)CrossRefADSGoogle Scholar
  20. 20.
    E. Seidel and W. M. Suen: Phys. Rev. D 42, 384 (1990)CrossRefADSGoogle Scholar
  21. 21.
    K.G. Karlsson: A&A 13, 333 (1971); 58, 237 (1977)ADSGoogle Scholar
  22. 22.
    J.M. Barnothy and M.F. Barnothy: PASP 88, 837 (1976)CrossRefADSGoogle Scholar
  23. 23.
    W.M. Napier and G. Burbidge: MNRAS 342, 601 (2003)CrossRefADSGoogle Scholar
  24. 24.
    N.K. Glendenning: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn (Springer Verlag, New York 2000)MATHGoogle Scholar
  25. 25.
    T.G. Wang and X.G. Zhang: MNRAS 340, 793 (2003)CrossRefADSGoogle Scholar
  26. 26.
    S.K. Blau, E.I. Guendelman and A.H. Guth: Phys. Rev. D 35, 1747 (1987)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    V.A. Berezin et al.: Phys. Lett. B 212, 415 (1988)CrossRefADSGoogle Scholar
  28. 28.
    A. Aurilia and E. Spallucci: Phys. Lett. B 251, 39 (1990)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    A. Aurilia, R. Balbinot and E. Spallucci: Phys. Lett. B 262, 222 (1991)CrossRefADSGoogle Scholar
  30. 30.
    A. Gorsky and K. Selivanov: Phys. Rev. D 62, 071702 (2000)CrossRefADSGoogle Scholar
  31. 31.
    S.J. Asztalos et al.: Phys. Rev. D 69, 011101(R) (2004)CrossRefADSGoogle Scholar
  32. 32.
    E.W. Kolb and I.I. Tkachev: Phys. Rev. D 49, 5040 (1994)CrossRefADSGoogle Scholar
  33. 33.
    E. Seidel and W.M. Suen: Phys. Lett. 72, 2516 (1994)CrossRefGoogle Scholar
  34. 34.
    A.A. Svidzinsky: preprint astro-ph/0409064Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anatoly A. Svidzinsky
    • 1
  1. 1.Department of Physics, Institute for Quantum StudiesTexas A&M University

Personalised recommendations