Advertisement

Cosmological Interpretation from High Redshift Clusters Observed within the XMM-Newton Ω-Project

  • Alain Blanchard
Conference paper

Summary

During the last ten years astrophysical cosmology has brought three remarkable results of deep impact for fundamental physics: the existence of non-baryonic dark matter, the (nearly) flatness of space, the domination of the density of the universe by some gravitationally repulsive fluid. This last result is probably the most revolutionizing one: the scientific review Sciences has considered twice results on this question as Breakthrough of the Year (for 1998 and 2003). However, direct evidence of dark energy are still rather weak, and the strength of the standard scenario relies more on the “concordance” argument rather than on the robustness of direct evidences. Furthermore, a scenario can be build in an Einstein-de Sitter universe, which reproduces as well as the concordance model the following various data relevant to cosmology: WMAP results, large scale structure of the universe, local abundance of massive clusters, weak lensing measurements, most Hubble constant measurements not based on stellar indicators. Furthermore, recent data on distant x-ray clusters obtained from XMM and Chandra indicates that the observed abundances of clusters at high redshift taken at face value favors an Einstein de Sitter model and are hard to reconcile with the concordance model. It seems wise therefore to consider that the actual existence of the dark energy is still an open question.

Keywords

Dark Matter Dark Energy Cosmological Constant Redshift Range Hubble Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bartlett et al.: proceedings of the XXIth rencontres de Moriond, astroph/0106098 (2001)Google Scholar
  2. 2.
    A. Benoît et al.: astro-ph/0210305, A&A 399, L19 (2003)CrossRefADSGoogle Scholar
  3. 3.
    A. Benoît et al.: astro-ph/0210306, A&A 399, L25 (2003)CrossRefADSGoogle Scholar
  4. 4.
    C. L. Bennett et al.: ApJS 148, 97 (2003)CrossRefADSGoogle Scholar
  5. 5.
    A. Blanchard: Ap&SS 290, 135 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A. Blanchard: proceedings of the Faro Conference “NewWorlds in Astroparticle Physics”, 2002, astro-ph/0301137, World Scientific edt, pp 50–69. (2003)Google Scholar
  7. 7.
    A. Blanchard, J. Bartlett: A&A 332, 49L (1998)ADSGoogle Scholar
  8. 8.
    A. Blanchard, M. Douspis: astroph/0405489 A&A submitted (2005)Google Scholar
  9. 9.
    A. Blanchard, M. Douspis, M. Rowan-Robinson, S. Sarkar: A&A 412, 35 (2003)CrossRefADSMATHGoogle Scholar
  10. 10.
    A. Blanchard, R. Sadat, J. Bartlett., M. Le Dour: A&A 362, 809 (2000)ADSGoogle Scholar
  11. 11.
    S. Borgani et al.: ApJ 517, 40 (1999)CrossRefADSGoogle Scholar
  12. 12.
    S. Borgani et al.: ApJ 561, 13 (2001)CrossRefADSGoogle Scholar
  13. 13.
    S. Boughn, R. Crittenden: Nature 427, 45 (2004)CrossRefADSGoogle Scholar
  14. 14.
    P. de Bernardis et al.: Nature 404, 955 (2000)CrossRefADSGoogle Scholar
  15. 15.
    J. Diemand, B. Moore, J. Stadel: MNRAS 352, 535 (2004)CrossRefADSGoogle Scholar
  16. 16.
    M. Douspis, A. Riazuelo, Y. Zolnierowski, A. Blanchard: A&A 405, 409 (2003)CrossRefADSMATHGoogle Scholar
  17. 17.
    H. Ebeling, A. C. Edge, J. P. Henry: ApJ 553, 668 (2001)CrossRefADSGoogle Scholar
  18. 18.
    V. R. Eke, S. Cole, C. Frenk, J. P. Henry: MNRAS 298, 1145 (1998)CrossRefADSGoogle Scholar
  19. 19.
    W. L. Freedman, et al.: ApJ 553, 47 (2001)CrossRefADSGoogle Scholar
  20. 20.
    N. W. Halverson et al.: ApJ 568, 38 (2002)CrossRefADSGoogle Scholar
  21. 21.
    S. Hanany, et al.: ApJ 545, L5 (2000)CrossRefADSGoogle Scholar
  22. 22.
    S. Hancock, G. Rocha, A. N. Lasenby, C. M. Gutierrez: MNRAS 294, L1 (1998)CrossRefADSGoogle Scholar
  23. 23.
    S. Hannestad: PRD 63, 043009 (2001)CrossRefADSGoogle Scholar
  24. 24.
    J. P. Henry, I. M. Gioia, T. Maccacaro et al.: ApJ 386, 408 (1992)CrossRefADSGoogle Scholar
  25. 25.
    J. P. Henry: ApJ 489, L1 (1997)CrossRefADSGoogle Scholar
  26. 26.
    G. Hinshaw et al.: ApJS 148, 135 (2003)CrossRefADSGoogle Scholar
  27. 27.
    W. H. Kinney: PRD 63, 043001 (2001)CrossRefADSGoogle Scholar
  28. 28.
    C. Lineweaver, D. Barbosa, A. Blanchard, J. Bartlett: A&A 322, 365 (1997)ADSGoogle Scholar
  29. 29.
    C. Lineweaver, D. Barbosa, ApJ 496, 624 (1998)CrossRefADSGoogle Scholar
  30. 30.
    D. H. Lumb et al.: A&A 420, 853 (2004)CrossRefADSGoogle Scholar
  31. 31.
    A. Markevitch: ApJ 504, 27 (1998)CrossRefADSGoogle Scholar
  32. 32.
    J. Martin, R. H. Brandenberger: PRD 63, 123501 (2001)CrossRefADSGoogle Scholar
  33. 33.
    C. R. Mullis et al.: ApJ 594, 154 (2003)CrossRefADSGoogle Scholar
  34. 34.
    C. B. Netterfield et al.: ApJ 445, L69 (1995)CrossRefADSGoogle Scholar
  35. 35.
    J. Oukbir, A. Blanchard: A&A 262, L21 (1992)ADSGoogle Scholar
  36. 36.
    J. Oukbir, A. Blanchard: A&A 317, 10 (1997)ADSGoogle Scholar
  37. 37.
    G. Paturel, P. Teerikorpi: A&A 413, L31 (2004)CrossRefADSGoogle Scholar
  38. 38.
    S. Perlmutter et al.: ApJ 483, 565 (1997)CrossRefADSGoogle Scholar
  39. 39.
    S. Perlmutter et al.: ApJ 517, 565 (1999)CrossRefADSGoogle Scholar
  40. 40.
    Reichart, D. E. et al.: ApJ 518, 521 (1999)CrossRefADSGoogle Scholar
  41. 41.
    P. Rosati et al.: ApJ 492, L21 (1998)CrossRefADSGoogle Scholar
  42. 42.
    D. Reiss et al.: AJ 116, 1009 (1998)CrossRefADSGoogle Scholar
  43. 43.
    A. K. Romer et al.: ApJS 126, 209 (2000)CrossRefADSGoogle Scholar
  44. 44.
    R. Sadat, A. Blanchard: A&A 371, 19 (2001)CrossRefADSMATHGoogle Scholar
  45. 45.
    R. Sadat, A. Blanchard, J. Oukbir: A&A 329, 21 (1998)ADSGoogle Scholar
  46. 46.
    R. Sadat, A. Blanchard, J.-P. Kneib, G. Mathez, B. Madore, J. M Mazzarella: http://bax.ast.obs-mip.fr/ A&A 424, 1097 (2004)CrossRefADSGoogle Scholar
  47. 47.
    R. K. Sheth, H. J. Mo, G. Tormen: MNRAS 323, 1 (2001)CrossRefADSGoogle Scholar
  48. 48.
    G. F. Smoot et al.: ApJL 396, L1 (1992)CrossRefADSGoogle Scholar
  49. 49.
    D. N. Spergel et al.: ApJS 148, 175 (2003)CrossRefADSGoogle Scholar
  50. 50.
    D. Tocchini-Valentini, M. Douspis, J. Silk: astro-ph/0402583, MNRAS to be published (2005)Google Scholar
  51. 51.
    T. P. Viana, A. R. Liddle: MNRAS 303, 535 (1999)CrossRefADSGoogle Scholar
  52. 52.
    S. C. Vauclair et al.: A&A 412, L37 (2003)CrossRefADSGoogle Scholar
  53. 53.
    S. C. Vauclair et al.: in preparation (2005)Google Scholar
  54. 54.
    P. T. P. Viana, A. R. Liddle: MNRAS 303, 535 (1999)CrossRefADSGoogle Scholar
  55. 55.
    A. Vikhlinin et al.: ApJ 502, 558 (1998)CrossRefADSGoogle Scholar
  56. 56.
    A. Vikhlinin et al.: ApJL 578, 107 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alain Blanchard
    • 1
  1. 1.LATT, UPS, CNRSToulouseFrance

Personalised recommendations