Cosmological Constant and Gravity+Matter Self-Creation in a Cosmology with an Unbounded Hamiltonian Taking into Account Negative Energy of Gravity

  • V.V. Kocharovsky
  • E.V. Derishev
  • Vl.V. Kocharovsky
Conference paper


We outline a solution to the cosmological constant problem and dynamics of the Universe expansion that follow from the quantum field theory of interacting gravity and matter with an unbounded Hamiltonian taking into account a negative-energy contribution from the metric conformal factor.


Conformal Factor Conformal Time Cosmological Constant Problem Universe Expansion Adiabatic Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.V. Kocharovsky and Vl.V. Kocharovsky: Found. of Physics 26, 243 (1996)CrossRefADSGoogle Scholar
  2. 2.
    V.V. Kocharovsky and Vl.V. Kocharovsky: Unstable quantum field theory solves the problem of quantum gravity (Invited lecture, Internat. School on Nonlinear Science, N. Novgorod, Sept. 1995). In: Nonlinear Waves. Synchronization and Patterns, part II, ed by M.I. Rabinovich, M.M. Sushchik, V.D. Shalfeev (Nizhny Novgorod Univ. Press 1995) pp 37–53Google Scholar
  3. 3.
    G.B. Akguc, L.E. Reichl, E.V. Derishev, V.V. Kocharovsky, and Vl. V. Kocharovsky: Phys. Rev. E 70, 066210 (2004)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    N.D. Birell and P.C.W. Davies: Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge London 1982)Google Scholar
  5. 5.
    E. Kolb and M. Turner: The Early Universe (Addison-Wesley, New York 1988)Google Scholar
  6. 6.
    E. Calzetta and C. El Hasi: Class. Quantum Grav. 10, 1825 (1993)CrossRefADSGoogle Scholar
  7. 7.
    E. Calzetta. In Determenistic Chaos in General Relativity, ed by A. Burd, A. Coley, and D. Hobill (Plenum, New York 1994)Google Scholar
  8. 8.
    S. Blanco et al.: Gen. Rel. Grav. 26, 1131 (1994)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    S. Blanco, A. Costa, and O. A. Rosso: Gen. Rel. Grav. 27, 1295 (1995)MathSciNetCrossRefMATHADSGoogle Scholar
  10. 10.
    E. Calzetta and C. El Hasi: Phys. Rev. D 51, 2713 (1995)CrossRefADSGoogle Scholar
  11. 11.
    A. Helmi and H. Vucetich: Phys. Lett. A 230, 153 (1997)MathSciNetCrossRefADSMATHGoogle Scholar
  12. 12.
    L.D. Landau and E.M. Lifshitz, Mechanics (Course of Theoretical Physics, Vol. 1) (Butterworth-Heinemann, Oxford 2000)Google Scholar
  13. [13]
    A.G. Riess et al.: Astrophys. J. 607, 665 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V.V. Kocharovsky
    • 1
    • 2
  • E.V. Derishev
    • 2
  • Vl.V. Kocharovsky
    • 2
  1. 1.Department of Physics and Institute for Quantum StudiesTexas A&M UniversityUSA
  2. 2.Institute of Applied Physics of the Russian Academy of ScienceNizhny NovgorodRussia

Personalised recommendations