Advertisement

Liouville Cosmology

  • J. Ellis
  • N.E. Mavromatos
  • D.V. Nanopoulos
Conference paper

Abstract

Liouville string theory is a natural framework for discussing the nonequilibrium evolution of the Universe. It enables non-critical strings to be treated in mathematically consistent manner, in which target time is identified with a world-sheet renormalization-group scale parameter, preserving target-space general coordinate invariance and the existence of an S-matrix. We review our proposals for a unified treatment of inflation and the current acceleration of the Universe. We link the current acceleration of the Universe with the value of the string coupling. In such a scenario, the dilaton plays an essential background rôle, driving the acceleration of the Universe during the present era after decoupling as a constant during inflation.

Keywords

String Theory Central Charge Vacuum Energy Einstein Frame String Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Vols. I & II (Cambridge University Press, 1987).Google Scholar
  2. 2.
    J. Polchinski, String theory, Vol. 2 (Cambridge University Press, 1998); J.H. Schwarz, hep-th/9907061.Google Scholar
  3. 3.
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phys. Lett. B 429 (1998) 263, hep-ph/9803315; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phys. Lett. B 436 (1998) 257, hep-ph/9804398.CrossRefADSGoogle Scholar
  4. 4.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 4690, hep-th/9906064.MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    see, for instance: L.E. Ibanez, R. Rabadan and A.M. Uranga, Nucl. Phys. B 576 (2000) 285, hep-th/9905098; L.E. Ibanez, hep-ph/9905349; C.A. Scrucca and M. Serone, JHEP 9912 (1999) 024, hep-th/9912108; D.M. Ghilencea and G.G. Ross, Nucl. Phys. B 595 (2001) 277, hep-ph/0006318, and references therein.MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    D. Langlois, Prog. Theor. Phys. Suppl. 148 (2003) 181, hep-th/0209261, and references therein.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, Phys. Rev. D 64 (2001) 123522, hep-th/0103239.Google Scholar
  8. 8.
    B.P. Schmidt et al. [Supernova Search Team Collaboration], Astrophys. J. 507 (1998) 46, astro-ph/9805200; S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Astrophys. J. 517 (1999) 565, astro-ph/9812133; J.P. Blakeslee et al. [Supernova Search Team Collaboration], Astrophys. J. 589 (2003) 693, astro-ph/0302402; A.G. Riess et al. [Supernova Search Team Collaboration], Astrophys. J. 560 (2001) 49, astro-ph/0104455.CrossRefADSGoogle Scholar
  9. 9.
    D.N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148 (2003) 175, astro-ph/0302209.CrossRefADSGoogle Scholar
  10. 10.
    E. Witten, hep-th/0106109.Google Scholar
  11. 11.
    W. Fischler and L. Susskind, Phys. Lett. B 171 (1986) 383; Phys. Lett. B 173 (1986) 262.MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    I. Antoniadis, C. Bachas, J.R. Ellis and D.V. Nanopoulos, Phys. Lett. B 211 (1988) 393; Nucl. Phys. B 328 (1989) 117; Phys. Lett. B 257 (1991) 278.CrossRefADSGoogle Scholar
  13. 13.
    F. David, Mod. Phys. Lett. A 3 (1988) 1651; J. Distler and H. Kawai, Nucl. Phys. B 321 (1989) 509; J. Distler, Z. Hlousek and H. Kawai, Int. J. Mod. Phys. A 5 (1990) 391; see also: N.E. Mavromatos and J.L. Miramontes, Mod. Phys. Lett. A 4 (1989) 1847; E. D’Hoker and P.S. Kurzepa, Mod. Phys. Lett. A 5 (1990) 1411.CrossRefADSGoogle Scholar
  14. 14.
    A.B. Zamolodchikov, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565].MathSciNetADSGoogle Scholar
  15. 15.
    G.A. Diamandis, B.C. Georgalas, N.E. Mavromatos and E. Papantonopoulos, Int. J. Mod. Phys. A 17 (2002) 4567, hep-th/0203241; G.A. Diamandis, B.C. Georgalas, N.E. Mavromatos, E. Papantonopoulos and I. Pappa, Int. J. Mod. Phys. A 17 (2002) 2241, hep-th/0107124.MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    E. Witten, Int. J. Mod. Phys. A 10 (1995) 1247, hep-th/9409111.MATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Lett. B 293 (1992) 37, hep-th/9207103; Invited review for the special Issue of J. Chaos Solitons Fractals, Vol. 10, (eds. C. Castro amd M.S. El Naschie, Elsevier Science, Pergamon 1999) 345, hep-th/9805120; Phys. Rev. D 63 (2001) 024024, gr-qc/0007044.MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    E. Gravanis and N. E. Mavromatos, Phys. Lett. B 547 (2002) 117, hepth/0205298; N. E. Mavromatos, hep-th/0210079 (published in Oulu 2002 (Finland), Beyond the desert (ed. H.V. Klapdor-Kleingrothaus, IoP 2003)), 3.CrossRefADSMATHGoogle Scholar
  19. 19.
    J. Ellis, N.E. Mavromatos, D.V. Nanopoulos and A. Sakharov, gr-qc/0407089, New J. Phys. 6 (2004) 171.MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    I. Klebanov and A.A. Tseytlin, Nucl. Phys. B 546 (1999) 155; Nucl. Phys. B 547 (1999) 143.MathSciNetCrossRefADSMATHGoogle Scholar
  21. 21.
    G. Curci and G. Paffuti, Nucl. Phys. B 286 (1987) 399.CrossRefADSGoogle Scholar
  22. 22.
    J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Mod. Phys. Lett. A 10 (1995) 1685, hep-th/9503162.CrossRefADSGoogle Scholar
  23. 23.
    J. Ellis, N.E. Mavromatos, D.V. Nanopoulos and M. Westmuckett, in preparation.Google Scholar
  24. 24.
    J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, hep-th/0412240.Google Scholar
  25. 25.
    J. Ellis, N.E. Mavromatos and M. Westmuckett, Phys. Rev. D 70 (2004) 044036, gr-qc/0405066; gr-qc/0501060.MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    S.M. Carroll, Living Rev. Rel. 4 (2001) 1, astro-ph/0004075.MATHGoogle Scholar
  27. 27.
    C. Bachas, hep-th/9503030.Google Scholar
  28. 28.
    I.I. Kogan and N.E. Mavromatos, Phys. Lett. B 375 (1996) 111, hepth/9512210; I.I. Kogan, N.E. Mavromatos and J.F. Wheater, Phys. Lett. B 387 (1996) 483, hep-th/9606102; J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Int. J. Mod. Phys. A 12 (1997) 2639, hep-th/9605046; N.E. Mavromatos and R.J. Szabo, Phys. Rev. D 59 (1999) 104018, hep-th/9808124; JHEP 0110 (2001) 027, hep-th/0106259.MathSciNetCrossRefADSMATHGoogle Scholar
  29. 29.
    J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos and A.S. Sakharov, Int. J. Mod. Phys. A 19 (2004) 4413, gr-qc/0312044.MathSciNetCrossRefADSMATHGoogle Scholar
  30. 30.
    L. Susskind, hep-th/0302219.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Ellis
    • 1
  • N.E. Mavromatos
    • 2
  • D.V. Nanopoulos
    • 3
    • 4
    • 5
  1. 1.TH Division, Physics DepartmentCERNSwitzerland
  2. 2.Theoretical Physics, Physics DepartmentKing’s College LondonUK
  3. 3.Mitchell Institute for Fundamental PhysicsTexas A&M UniversityCollege StationUSA
  4. 4.Astroparticle Physics Group, Houston Advanced Research CenterMitchell CampusWoodlandsUSA
  5. 5.Division of Natural SciencesAcademy of AthensAthensGreece

Personalised recommendations