Tripling the LHC: The Path from Technology to Discovery

  • Peter McIntyre
  • Akhdiyor Sattarov
Conference paper


Large Hadron Collider Synchrotron Radiation Beam Tube Parton Luminosity Mass Reach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WMAP Collaboration, D.N. Spergel et al., Astrophys. J. Suppl. 148 (2003) 175.CrossRefADSGoogle Scholar
  2. 2.
    H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, JCAP 0408 (2004) 005; G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B544 (1999) 3; N. Arkani-Hamed and S. Dimopoulos, hep-ph/0409232; S. Godfrey, Phys. Rev. D51 (1995) 1402.ADSGoogle Scholar
  3. 3.
    R.A. Scanlan, “Superconducting Materials for the Next Generation Colliders”, VLHC Magnet Technologies Workshop, Fermilab, May 24–26, 2000 P2.pptGoogle Scholar
  4. 4.
    S. Gourlay, ‘High field magnet R&D in the USA’, IEEE Trans. On Appl. Superconductivity 14, 333 (2004).CrossRefGoogle Scholar
  5. 5.
    D. Finley, D. Edwards, R. Hanft, D. Johnson, A. McInturff, and J. Strait, “Time dependent chromaticity changes in the Tevatron”, Proc. Particle Accel. Conf. (PAC87), Washington, DC, IEEE Cat#: 87CH2387-9, pp. 151–153; S. Sanfilippo, ‘Persistent and coupling current effects in the LHC superconducting dipoles’, Proc. Appl. Supercon-ductivity Conf., Houston, TX, August 4–9, 2002.Google Scholar
  6. 6.
    B. Dutta (Dept. of Physics, Univ. of Regina, Saskatchewan) calculated the parton luminosities shown in Fig. 3 (private communication).Google Scholar
  7. 7.
    E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579(1984).CrossRefADSGoogle Scholar
  8. 8.
    CTEQ Collaboration, H. Lai et al., Phys Rev. D55 (1997) 1280.CrossRefADSGoogle Scholar
  9. 9.
    J. Ellis, K.A. Olive, Y. Santoso, and V.C. Spanos, ‘Prospects for sparticle discovery in variants of the MSSM’, CERN-PH-TH/2004-131, Scholar
  10. 10.
    J. Lee and D.C. Larbalestier, “Advances in superc≥≤onducting strands for accelerator magnet application”, Proc. 2003 Particle Accel. Conf., Portland, OR, May 2003.Google Scholar
  11. 11.
    Scanlan, R.M., et al, “Fabrication and test results for coils fabricated with Bi-2212 Rutherford-type cable,” presented at the Applied Superconductivity Conference (ASC), Houston, TX, Aug. 4–9, 2002, SC-MAG #761, LBNL-49571.Google Scholar
  12. 12.
    N. Diaczenko et al., “Stress management in high-field dipoles”, Proc. 1997 Particle Accelerator Conf, Vancouver, May 12–16, p.3443 (1997).Google Scholar
  13. 13.
    R. Blackburn et al., “Construction and testing of block-coil high-field dipoles for future hadron colliders”, Proc. Appl. Superconductivity Conf., Houston, TX, August 4–9, 2002.Google Scholar
  14. 14.
    S. Mattafirri et al., “Performance analysis of HD1: a 16 Tesla Nb3Sn dipole magnet”, Proc. 2004 Appl. Superconductivity Conf., Jacksonville, FL, Oct. 1–6, 2004.Google Scholar
  15. 15.
    C. Battle et al., “Optimization of block-coil dipoles for hadron colliders”, Proc. Particle Accelerator Conf., New York, NY, March 30–April 1, 1999.Google Scholar
  16. 16.
    P. Bauer, et al., “Photon Stop R&D Proposal,” Fermilab Technical Division Note TD-01-30.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter McIntyre
    • 1
  • Akhdiyor Sattarov
    • 1
  1. 1.Department of PhysicsTexas A&M UniversityCollege StationUSA

Personalised recommendations