Helix-Loop-Helix Proteins in Lymphocyte Lineage Determination

  • B. L. Kee
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 290)


The cells of the lymphoid system develop from multipotent hematopoietic stem cells through a series of intermediate progenitors with progressively restricted developmental options. Commitment to a given lymphoid lineage appears to be controlled by numerous transcriptional regulatory proteins that activate lineage-specific gene expression programs and extinguish expression of lineage-inappropriate genes. In this review I discuss the function of transcription factors belonging to the helix-loop-helix protein family in the control of lymphoid cell fate decisions. A model of lymphocyte lineage determination based on the antagonistic activity of transcriptional activating and repressing helix-loop-helix proteins is presented.


Lineage Commitment Multipotent Progenitor Lymphoid Lineage Lymphocyte Lineage Common Lymphoid Progenitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 104:193–197CrossRefGoogle Scholar
  2. Allman D, Aster JC, Pear WS (2002) Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev 187:75–86PubMedCrossRefGoogle Scholar
  3. Bain G, Gruenwald S, Murre C (1993) E2A, E2-2 are subunits of B-cell-specific E2-box DNA-binding proteins. Mol Cell Biol 13:3522–3529PubMedGoogle Scholar
  4. Bain G, Robanus Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, van der Valk M, te Riele HPJ, Berns A, Murre C (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 19:885–892CrossRefGoogle Scholar
  5. Bain G, Engel I, Robanus Maandag EC, te Riele HPJ, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D, Murre C (1997) E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17:4782–4791PubMedGoogle Scholar
  6. Bain G, Cravatt CB, Loomans C, Alberola-Ila J, Hedrick SM, Murre C (2001) Regulation of the helix-loop-helix proteins, E2A, Id3, by the Ras-ERK MAPK cascade. Nature Immunol 1:165–171CrossRefGoogle Scholar
  7. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana JL, Gallacher L, Dick JE (1999) Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 189:1139–1147PubMedCrossRefGoogle Scholar
  8. Chu K, Nemoz-Gaillard E, Tsai MJ (2001) BETA2 and pancreatic islet development. Recent Prog Horm Res 16:23–46CrossRefGoogle Scholar
  9. Engel I, Johns C, Bain G, Rivera RR, Murre C (2001) Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med 194:733–745PubMedCrossRefGoogle Scholar
  10. Fisher A, Caudy M (1998a) The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 10:298–306CrossRefGoogle Scholar
  11. Fisher AL, Caudy M (1998b) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and inverterates. Genes Dev 12:1931–1940PubMedGoogle Scholar
  12. Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gne and CD3(−)CD4(+)CD45(+) cells. Immunity 17:31–40PubMedCrossRefGoogle Scholar
  13. Garrell J, Campuzano S (1991) The helix-loop-helix domain: a common motif for bristles, muscles and sex. Bioessays 13:493–498PubMedCrossRefGoogle Scholar
  14. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, Jorgas T, Kurz SM, Rose-John S, Yokota Y, Zenke M (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 1:380–386CrossRefGoogle Scholar
  15. Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 1:760–773Google Scholar
  16. Hagman J, Gutch MJ, Lin H, Grosschedl R (1995) EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. EMBO J 14:2907–2916PubMedGoogle Scholar
  17. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K (1991) Resolution and characterization of pro-B, pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173:1213–1225PubMedCrossRefGoogle Scholar
  18. Heemskerk MHM, Blom B, Nolan G, Stegmann APA, Bakker AQ, Weirer K, Res PCM, Spits H (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor IdJ. Exp Med 186:1597–1602CrossRefGoogle Scholar
  19. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49PubMedCrossRefGoogle Scholar
  20. Ikawa T, Fujimoto S, Kawamoto H, Katsura Y, Yokota Y (2001) Commitment to natural killer cells requires the helix-loop-helix inhibitor Id. Proc Natl Acad Sci 18:5164–5169CrossRefGoogle Scholar
  21. Kee BL, Murre C (1998) Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor EJ. Exp Med 188:699–713CrossRefGoogle Scholar
  22. Kee BL, Rivera RR, Murre C (2001) Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nature Immunol 1:242–247CrossRefGoogle Scholar
  23. Kee BL, Bain G, Murre C (2002) IL7Rα and E47: independent pathways required for the development of multipotent lymphoid progenitors. EMBO J 21:103–113PubMedCrossRefGoogle Scholar
  24. Kim D, Peng XC, Sun X-H (1999) Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol Cell Biol 19:8240–8253PubMedGoogle Scholar
  25. Kim D, Xu M, Nie L, Peng XC, Jimi E, Voll RE, Nguyen T, Ghosh S, Sun X-H (2002) Helix-loop-helix proteins regulate pre-TCR, TCR signaling through modulation of Rel/NF-kappaB activities. Immunity 16:9–21PubMedCrossRefGoogle Scholar
  26. Lin H, Grosschedl R (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF Nature 176:263–267Google Scholar
  27. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 10:429–440CrossRefGoogle Scholar
  28. Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 1:292–303CrossRefGoogle Scholar
  29. Mebius RE, Miyamoto T, Christensen J, Domen J, Cupedo T, Weissman IL, Akashi K (2001) The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3− cells, as well as macrophages. J Immunol 166:6593–6601PubMedGoogle Scholar
  30. Murre C, Baltimore D (1992)The helix-loop-helix motif: structure and function. In: McKnight SL, Yamamoto KR (eds) Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 161–879Google Scholar
  31. Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, myc proteins. Cell 16:777–783CrossRefGoogle Scholar
  32. O'Riordan M, Grosschedl R (1999) Coordinate regulation of B cell differentiation by the transcription factors EBF, E2A Immunity 11:21–31Google Scholar
  33. Pan L, Sato S, Frederick JP, Sun X-H, Zhuang Y (1999) Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol Cell Biol 19:5969–5980PubMedGoogle Scholar
  34. Pierelli L, Marone M, Baonanno G, Rutella S, de Ritis D, Mancuso S, Leone G, Scambia G (2002) Transforming growth factor-beta 1 causes transcriptional activation of CD34 and preserves haematopoietic stem/progenitor cell activity. Br J Haematol 118:627–637PubMedCrossRefGoogle Scholar
  35. Prohaska SS, Scherer DC, Weissman IL, Kondo M (2002) Developmental plasticity of lymphoid progenitors. Semin Immunol 14:377–384PubMedCrossRefGoogle Scholar
  36. Rivera RR, Murre C (2001) The regulation and function of the Id proteins in lymphocyte development. Oncogene 10:8308–8316CrossRefGoogle Scholar
  37. Rivera RR, Johns CP, Quan J, Johnson RS, Murre C (2000) Thymocyte selection is regulated by the helix-loop-helix inhibitor protein Id. Immunity 12:17–26PubMedCrossRefGoogle Scholar
  38. Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 17:16–25CrossRefGoogle Scholar
  39. Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and enhancer of split. Genes Dev 1:2620–2634Google Scholar
  40. Shen C-P, Kadesch T (1995) B-cell-specific DNA binding by an E47 homodimer. Mol Cell Biol 15:4518–4524PubMedGoogle Scholar
  41. Sigvardsson M, O'Riordan M, Grosschedl R (1997) EBF, E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 1:25–36CrossRefGoogle Scholar
  42. Sigvardsson M, Clark DR, Fitzsimmons D, Doyle M, Akerblad P, Breslin T, Bilke S, Li R, Yeamans C, Zhang G, Hagman J (2002) Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol Cell Biol 12:8539–8551CrossRefGoogle Scholar
  43. Smith EM, Gisler R, Sigvardsson M (2002) Cloning and characterization of a promoter flanking the early B cell factor (EBF) gene indicates roles of E-proteins and autoregulation in the control of EBF expression. J Immunol 169:261–270PubMedGoogle Scholar
  44. Timita K, Hattori M, Nakamura E, Nakanishi S, Minato N, Kageyama R (1999) The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev 13:1203–1210Google Scholar
  45. Tudor K-SRS, Payne KJ, Yamashita Y, Kincade PW (2000) Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 12:335–345PubMedCrossRefGoogle Scholar
  46. Van Doren M, Ellis HM, Posakony JW (1991) The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaetescute protein complexes. Development 113:245–255PubMedGoogle Scholar
  47. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y (1997) High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 17:7317–7327PubMedGoogle Scholar
  48. Yang D, Lu H, Hong Y, Jinks TM, Estes PA, Erickson JW (2001) Interpretation of X chromosome dose at Sex-lethal requires non-E-box sites for the basic helix-loop-helix proteins SISB, daughterless. Mol Cell Biol 11:1581–1592CrossRefGoogle Scholar
  49. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id. Nature 197:702–706CrossRefGoogle Scholar
  50. Yokota Y, Mori S, Nishikawa S-I, Mansouri A, Gruss P, Kusunoki T, Katakai T, Shimizu A (2002) The helix-loop-helix inhibitor Id2 and cell differentiation control. Curr Top Microbiol Immunol 151:35–41Google Scholar
  51. Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 19:875–884CrossRefGoogle Scholar
  52. Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2 and HEB Mol. Cell Biol 16:2898–2905Google Scholar
  53. Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA Mol. Cell Biol 18:3340–3349Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • B. L. Kee
    • 1
  1. 1.Department of PathologyUniversity of ChicagoChicagoUSA

Personalised recommendations