Wnt Signaling in Lymphopoiesis

  • A. Timm
  • R. Grosschedl
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 290)


Wnt signaling elicits changes in gene expression and cell physiology through β-catenin and LEF1/TCF proteins. The signal transduction pathway regulates many cellular and developmental processes, including cell proliferation, cell fate decisions and differentiation. In cells that have been stimulated by a Wnt protein, cytoplasmic β-catenin is stabilized and transferred to the nucleus, where it interacts with the nuclear mediators of Wnt signaling, the LEF1/TCF proteins, to elicit a transcriptional response. Loss-of-function and gain-of-function experiments in the mouse have provided insight into the role of this signaling pathway in lymphopoiesis. The self-renewal and maintenance of hematopoietic stem cells is regulated by Wnt signals. Differentiation of T cells and natural killer cells is blocked in the absence of LEF1/TCF proteins, and pro-B cell proliferation is regulated by Wnt signaling.


Adenomatous Polyposis Coli Planar Cell Polarity Lymphoid Enhancer Factor Common Myeloid Progenitor Natural Kill Cell Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804CrossRefPubMedGoogle Scholar
  2. Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298:2006–2010CrossRefPubMedGoogle Scholar
  3. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197CrossRefPubMedGoogle Scholar
  4. Atcha FA, Munguia JE, Li TW, Hovanes K, Waterman ML (2003) A new beta-catenin-dependent activation domain in T cell factor. J Biol Chem 278:16169–16175CrossRefPubMedGoogle Scholar
  5. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W (1997) A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89:3624–3635PubMedGoogle Scholar
  6. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Hollander GA (2002) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3:1102–1108CrossRefPubMedGoogle Scholar
  7. Barker N, Hurstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodeling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J 20:4935–4943CrossRefPubMedGoogle Scholar
  8. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263CrossRefPubMedGoogle Scholar
  9. Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin APC, and GSK3beta. Science 280:596–599CrossRefPubMedGoogle Scholar
  10. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382:638–642CrossRefPubMedGoogle Scholar
  11. Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X (2002) Pygopus encodes a nuclear protein essential for wingless/Wnt signaling. Development 129:4089–4101PubMedGoogle Scholar
  12. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the Frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230CrossRefPubMedGoogle Scholar
  13. Bienz M (1998) TCF: transcriptional activator or repressor? Curr Opin Cell Biol 10:366–372CrossRefPubMedGoogle Scholar
  14. Bradley RS, Brown AM (1990) The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J 9:1569–1575PubMedGoogle Scholar
  15. Brannon M, Gomperts M, Sumoy L, Moon R, Kimelman D (1997) A b-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370PubMedGoogle Scholar
  16. Brannon M, Brown JD, Bates R, Kimelman D, Moon RT (1999) XCtBP is a XTcf-3 corepressor with roles throughout Xenopus development. Development 126:3159–3170PubMedGoogle Scholar
  17. Brantjes H, Roose J, van de Wetering M, Clevers H (2001) All Tcf HMG box transcription factors interact with Groucho-related corepressors. Nucleic Acid Res 29:1410–1419CrossRefPubMedGoogle Scholar
  18. Brennan J, Mager D, Jefferies W, Takei F (1994) Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties. J Exp Med 180:2287–2295CrossRefPubMedGoogle Scholar
  19. Bruhn L, Munnerlyn A, Grosschedl R (1997) ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 11:640–653PubMedGoogle Scholar
  20. Carlsson P, Waterman ML, Jones KA (1993) The hLEF/TCF-1 alpha HMG protein contains a context-dependent transcriptional activation domain that induces the TCR alpha enhancer in T cells. Genes Dev 5:880–894Google Scholar
  21. Cavallo R, Cox R, Moline M, Roose J, Polevoy G, Clevers H, Pfeifer M, Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 8:181–190Google Scholar
  22. Cobas M, Wilson A, Ernst B, Stéphane JC, Mancini H, MacDonald R, Kemler R, Radtke F (2004) β-Catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 199:221–229CrossRefPubMedGoogle Scholar
  23. Collins RT, Treisman JE (2000) Osa-containing Brahma chromatin remodelling complexes are required for the repression of wingless target genes. Genes Dev 14:3140–3152CrossRefPubMedGoogle Scholar
  24. Daniels DL, Weis WI (2002) ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell 10:573–584CrossRefPubMedGoogle Scholar
  25. David RP, Tree DM, Axelrod JD (2002) A three-tiered mechanism for regulation of planar cell polarity. Semin Cell Dev Biol 13:217–224CrossRefPubMedGoogle Scholar
  26. Fisher A, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12:1931–1940PubMedGoogle Scholar
  27. Galceran J, Farinas I, Depew MJ, Grosschedl R (1999) Wnt3a-/--like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes Dev 13:709–717PubMedGoogle Scholar
  28. Galceran J, Miyashita-Lin E, Devaney E, Rubenstein J, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus cells is regulated by LEF1. Development 127:469–482PubMedGoogle Scholar
  29. Giese K, Grosschedl R (1993) LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J 12:4667–4676PubMedGoogle Scholar
  30. Giese K, Amsterdam A, Grosschedl R (1991) DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev 5:2567–2578PubMedGoogle Scholar
  31. Giese K, Cox J, Grosschedl R (1992) The HMG domain of the lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195CrossRefPubMedGoogle Scholar
  32. Giese K, Kingsley C, Kirshner JR, Grosschedl R (1995) Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 9:995–1008PubMedGoogle Scholar
  33. Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A (1994) Onset of the TCR-β gene rearrangement and the role of TCR-β expression during CD3CD4CD8 thymocyte differentiation. J Immunology 152:4783–4792Google Scholar
  34. Gounari F, Aifantis I, Khazaie K, Hoeflinger S, Harada N, Taketo MM, von Boehmer H (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2:863–869CrossRefPubMedGoogle Scholar
  35. Graham TA, Weaver C, Mao F, Kimelman D, Xu W (2000) Crystal structure of a beta-catenin/Tcf complex. Cell 103:885–896CrossRefPubMedGoogle Scholar
  36. Graham TA, Clements WK, Kimelman D, Xu W (2002) The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Mol Cell 10:563–571CrossRefPubMedGoogle Scholar
  37. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173:1213–1225CrossRefPubMedGoogle Scholar
  38. Hattori N, Kawamoto H, Fujimoto S, Kuno K, Katsura Y (1996) Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J Exp Med 184:1137–1147CrossRefPubMedGoogle Scholar
  39. Hecht A, Stemmler MP (2003) Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem 278:3776–3785CrossRefPubMedGoogle Scholar
  40. Hecht A, Litterst CM, Huber O, Kemler R (1999) Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 274:18017–18025CrossRefPubMedGoogle Scholar
  41. Hecht A, Vleminckx K, Stemmler MP, Van Roy F, Kemler R (2000) The p300/CBP acetyltransferase function as transcriptional coactivators of b-catenin in vertebrates. EMBO J 19:1839–1850CrossRefPubMedGoogle Scholar
  42. Held W, Kunz B, Lowing-Kropf B, van de Wetering M, Clevers H (1999) Clonal acquisition of the Ly49A NK cell receptor is dependent on the trans-acting factor TCF-1. Immunity 11:433–442CrossRefPubMedGoogle Scholar
  43. Held W, Clevers H, Grosschedl R (2003) Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur J Immunol 33:1393–1398CrossRefPubMedGoogle Scholar
  44. Hinck L, Nathke IS, Papkoff J, Nelson WJ (1994a) Beta-catenin: a common target for the regulation of cell adhesion by Wnt-1 and Src signaling pathways. Trends Biochem Sci 19:538–542CrossRefPubMedGoogle Scholar
  45. Hinck L, Nelson WJ, Papkoff J (1994b) Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. J Cell Biol 124:729–741CrossRefPubMedGoogle Scholar
  46. Houghton L, Freeman A, Morgan BA (2003) Expression and regulation of Groucho-related genes in the embryonic chicken feather bud. Dev Dyn 226:587–595CrossRefPubMedGoogle Scholar
  47. Hsu S-C, Galceran J, Grosschedl R (1998) Modulation of the transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol Cell Biol 18:4807–4818PubMedGoogle Scholar
  48. Hsu W, Shakya R, Costantini F (2001) Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. J Cell Biol 155:1055–1064CrossRefPubMedGoogle Scholar
  49. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996) Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59:3–10CrossRefPubMedGoogle Scholar
  50. Hurlstone A, Clevers H (2002) T-cell factors: turn-ons and turn-offs. EMBO J 21:2303–2311CrossRefPubMedGoogle Scholar
  51. Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A (2000) GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19:537–545CrossRefPubMedGoogle Scholar
  52. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17:1371–1384CrossRefPubMedGoogle Scholar
  53. Ioannidis V, Beermann F, Clevers H, Held W (2001) The beta-catenin-TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol 2:691–697CrossRefPubMedGoogle Scholar
  54. Ishitani T, Ninomiya-Tsuji J, Matsumoto K (2003) Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol 23:1379–1389CrossRefPubMedGoogle Scholar
  55. Itoh K, Antipova A, Ratcliffe MJ, Sokol S (2000) Interaction of dishevelled and Xeno-pus axin-related protein is required for wnt signal transduction. Mol Cell Biol 20:2228–2238CrossRefPubMedGoogle Scholar
  56. Jamora C, DasGupta R, Kocieniewski P, Fuchs E (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422:317–322CrossRefPubMedGoogle Scholar
  57. Jiang J, Struhl G (1998) Regulation of the Hedgehog and wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493–496CrossRefPubMedGoogle Scholar
  58. Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2 activated natural killer cells. Nature 358:66–70CrossRefPubMedGoogle Scholar
  59. Kishida S, Yamamoto H, Ikeda S, Kishida M, Sakamoto I, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J Biol Chem 273:10823–10826CrossRefPubMedGoogle Scholar
  60. Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A (1999) DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 19:4414–4422PubMedGoogle Scholar
  61. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672CrossRefPubMedGoogle Scholar
  62. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998a) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383CrossRefPubMedGoogle Scholar
  63. Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, Markman M, Lamers W, Destree O, Clevers H (1998b) Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol 18:1248–1256PubMedGoogle Scholar
  64. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Zullig S, Basler K (2002) Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 109:47–60CrossRefPubMedGoogle Scholar
  65. Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185CrossRefPubMedGoogle Scholar
  66. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283CrossRefPubMedGoogle Scholar
  67. Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 97:8358–8363CrossRefPubMedGoogle Scholar
  68. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Gromer Y (1998) Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95:11590–11595CrossRefPubMedGoogle Scholar
  69. Li YS, Wasserman R, Hayakawa K, Hardy RR (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5:527–535CrossRefPubMedGoogle Scholar
  70. Logie C, Peterson CL (1997) Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 16:6772–6782CrossRefPubMedGoogle Scholar
  71. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302:179–183CrossRefPubMedGoogle Scholar
  72. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417:664–667CrossRefPubMedGoogle Scholar
  73. Marikawa Y, Elinson R (1998) β-TrCP is a negative regulator of Wnt/β-catenin signaling pathway and dorsal axis formatin in Xenopus embryos. Mech Dev 77:75–80CrossRefPubMedGoogle Scholar
  74. McCrea PD, Turck CW, Gumbiner B (1991) A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 154:1359–1361Google Scholar
  75. McQueen KL, Freeman JD, Takei F, Mager DL (1998) Localization of five new Ly49 genes, including three closely related to Ly49c. Immunogenetics 48:174–183CrossRefPubMedGoogle Scholar
  76. McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C (1999) Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 96:11464–11469CrossRefPubMedGoogle Scholar
  77. Miyagishi M, Fujii R, Hatta M, Yoshida E, Araya N, Nagafuchi A, Ishihara S, Nakajima T, Fukamizu A (2000) Regulation of Lef-mediated transcription and p53-dependent pathway by associating β-catenin with CBP/p300. J Biol Chem 275:35170–35175CrossRefPubMedGoogle Scholar
  78. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86:391–399CrossRefPubMedGoogle Scholar
  79. Mombaerts P, Clarke AR, Rudnicki MA, Iacomini J, Itohara S, Lafaille JJ, Wang L, Ichikawa Y, Jaenisch R, Hooper ML et al. (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360:225–231CrossRefPubMedGoogle Scholar
  80. Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J (2002) Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol 32:967–971CrossRefPubMedGoogle Scholar
  81. Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann s organizer. Nature 403:781–785CrossRefPubMedGoogle Scholar
  82. Noordermeer J, Klingensmith J, Perrimon N, Nusse R (1994) dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 367:80–83CrossRefPubMedGoogle Scholar
  83. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R (1998) Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20CrossRefPubMedGoogle Scholar
  84. Oosterwegel M, van de Wetering M, Dooijes D, Klomp L, Winoto A, Georgopoulos K, Meijlink F, Clevers H (1991) Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 173:1133–1142CrossRefPubMedGoogle Scholar
  85. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245PubMedGoogle Scholar
  86. Papkoff J, Schryver B (1990) Secreted int-1 protein is associated with the cell surface. Mol Cell Biol 10:2723–2730PubMedGoogle Scholar
  87. Parker DS, Jemison J, Cadigan KM (2002) Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129:2565–2576PubMedGoogle Scholar
  88. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407:535–538CrossRefPubMedGoogle Scholar
  89. Reya T, O’Riordan M, Okamura R, Devaney E, Willert K, Nusse R, Grosschedl R (2000) Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13:15–24CrossRefPubMedGoogle Scholar
  90. Reya T, Duncan AW, Ailles L, Domen J, Sherer DC, Willert K, Hintz L, Nusse R, Weismann IL (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414CrossRefPubMedGoogle Scholar
  91. Riese J, Yu X, Munnerlyn A, Eresh S, Hsu S, Grosschedl R, Bienz M (1997) LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88:777–787CrossRefPubMedGoogle Scholar
  92. Rolink A, Melchers F (1993) B lymphopoiesis in the mouse. Adv Immunol 53:123–156PubMedCrossRefGoogle Scholar
  93. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608–612CrossRefPubMedGoogle Scholar
  94. Ross DA, Kadesch T (2001) The notch intracellular domain can function as a coactivator for LEF-1. Mol Cell Biol 21:7537–7544CrossRefPubMedGoogle Scholar
  95. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103CrossRefPubMedGoogle Scholar
  96. Saint-Ruf C, Ungewiss K, Groettrup M, Bruno L, Fehling HJ, von Boehmer H (1994) Analysis and expression of a cloned pre-T cell receptor gene. Science 266:1208–1212PubMedGoogle Scholar
  97. Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC (1998) Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 161:3984–3991PubMedGoogle Scholar
  98. Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413CrossRefPubMedGoogle Scholar
  99. Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC (1999) Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J 18:2823–2835CrossRefPubMedGoogle Scholar
  100. Smith HRC, Karlhofer FM, Yokoyama WM (1994) Ly-49 multigene family expressed by IL-2 activated NK-cells. J Immunol 153:1068–1079PubMedGoogle Scholar
  101. Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S, Nolan GP, Clevers H (2001) Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31:285–293CrossRefPubMedGoogle Scholar
  102. Staal FJ, van Noort M, Strous GJ, Clevers HC (2002) Wnt signals are transmitted through N-terminally dephosphorylated β-catenin. EMBO Reports 3:63–68CrossRefPubMedGoogle Scholar
  103. Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308CrossRefPubMedGoogle Scholar
  104. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14:1741–1749PubMedGoogle Scholar
  105. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8:174–189PubMedGoogle Scholar
  106. Takemaru KI, Moon RT (2000) The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J Biol Chem 149:249–254Google Scholar
  107. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535CrossRefPubMedGoogle Scholar
  108. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M (2002) A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 4:367–373CrossRefPubMedGoogle Scholar
  109. Travis A, Amsterdam A, Belanger C, Grosschedl R (1991) LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain regulates T-cell receptor α enhancer function. Genes Dev 5:880–894PubMedGoogle Scholar
  110. Tutter AV, Fryer CJ, Jones KA (2001) Chromatin-specific regulation of LEF-1-beta-catenin transcription activation and inhibition in vitro. Genes Dev 15:3342–3354CrossRefPubMedGoogle Scholar
  111. Van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799CrossRefPubMedGoogle Scholar
  112. Van de Wetering M, Oosterwegel M, Dooijes D, Clevers H (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10:123–132PubMedGoogle Scholar
  113. Van den Berg D, Sharma AK, Bruno E, Hoffman R (1998) Role of members of the Wnt gene family in human hematopoiesis. Blood 92:3189–3202PubMedGoogle Scholar
  114. Van Genderen C, Okamura RM, Farinas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703PubMedGoogle Scholar
  115. Verbeek S, Izon D, Hofhuis F, Robanus-Maandag E, te Riele H, van de Wetering M, Oosterwegel M, Wilson A, MacDonald HR, Clevers H (1995) An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74CrossRefPubMedGoogle Scholar
  116. Wang HY, Malbon CC (2003) Wnt signaling Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 300:1529–1530CrossRefPubMedGoogle Scholar
  117. Weber U, Paricio N, Mlodzik M (2000) Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127:3619–3629PubMedGoogle Scholar
  118. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168CrossRefPubMedGoogle Scholar
  119. Wheelock MJ, Knudsen KA (1991) Cadherins and associated proteins. In Vivo 5:505–513PubMedGoogle Scholar
  120. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452CrossRefPubMedGoogle Scholar
  121. Wong S, Freeman JD, Kelleher C, Mager D, Takei F (1991) Ly-49 multigene family. New members of a superfamily of type II membrane proteins with lectin-like domains. J Immunol 147:1417–1423PubMedGoogle Scholar
  122. Wu L, Scollay R, Egerton M, Pearse M, Spangurude GJ, Shortman K (1991) CD4 expressed on earliest T-lineage precursor cells in the adult mouse thymus. Nature 374:71–74CrossRefGoogle Scholar
  123. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM (2003) Deletion of β-catenin impairs T cell development. Nat Immunol 4:1177–1182CrossRefPubMedGoogle Scholar
  124. Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J 22:2047–2059CrossRefPubMedGoogle Scholar
  125. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour JW, Dean DC (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101:79–89CrossRefPubMedGoogle Scholar
  126. Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407:401–405CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Timm
    • 1
  • R. Grosschedl
    • 1
    • 2
  1. 1.Gene Center and Institute of BiochemistryUniversity of MunichMunichGermany
  2. 2.Max-Plank-Institute of ImmunobiologyFreiburgGermany

Personalised recommendations