Advertisement

Single Component Materials

Keywords

Glass Transition Melting Peak Ethylene Terephthalate Cold Crystallization Amorphous Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References: Specific References

  1. 1.
    Wunderlich B (2003) Reversible Crystallization and the Rigid Amorphous Phase in Semicrystalline Macromolecules. Progr Polymer Sci 28: 383–450.Google Scholar
  2. 2.
    Ehrenfest P (1933) Phase Changes in the Ordinary and Extended Sense Classified According to the Corresponding Singularities of the Thermodynamic Potential. Proc Acad Sci, Amsterdam 36: 153–157, Suppl 75b, Mitt Kammerlingh Onnes Inst, Leiden.Google Scholar
  3. 3.
    Wunderlich B, Grebowicz J (1984) Thermotropic Mesophases and Mesophase Transitions of Linear, Flexible Macromolecules. Adv Polymer Sci 60/61: 1–59.Google Scholar
  4. 4.
    Wunderlich B (1964) A Thermodynamic Description of the Defect Solid State of Linear High Polymers; and: The Melting of Defect Polymer Crystals. Polymer 5: 125–134 and 611–624.Google Scholar
  5. 5.
    Fu Y, Chen W, Pyda M, Londono D, Annis B, Boller A, Habenschuss A, Cheng J, Wunderlich B (1996) Structure-property Analysis for Gel-spun Ultra-high Molecular-mass Polyethylene Fibers. J Macromol Sci, Phys B35: 37–87.Google Scholar
  6. 6.
    Jones JB, Barenberg, S, Geil PH (1977) Amorphous Linear Polyethylene: Electron Diffraction, Morphology, and Thermal Analysis. J Macromol Sci, Phys B15: 329–335.Google Scholar
  7. 7.
    Chen W, Wunderlich B (1999) Nanophase Separation of Small And Large Molecules. Macromol Chem Phys 200: 283–311.Google Scholar
  8. 8.
    Eyring H (1936) Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. J Chem Phys 4: 283–291.Google Scholar
  9. 9.
    Frenkel J (1946) Kinetic Theory of Liquids. Clarendon, Oxford.Google Scholar
  10. 10.
    Hirai N, Eyring H (1958) Bulk Viscosity of Liquids. J Appl Phys 29:810–816.CrossRefGoogle Scholar
  11. 11.
    Hirai N, Eyring H (1959) Bulk Viscosity of Polymerix Systems. J Polymer Sci 37: 51–70.Google Scholar
  12. 12.
    Wunderlich B, Bodily DM, Kaplan MH (1964) Theory and Measurement of the Glass-transformation Interval of Polystyrene. J Appl Phys 35: 95–102.Google Scholar
  13. 13.
    Thomas LC, Boller A, Okazaki I, Wunderlich B (1997) Modulated Differential Scanning Calorimetry in the Glass Transition Region, IV. Pseudo-isothermal Analysis of the Polystyrene Glass Transition, Thermochim Acta 291: 85–94.CrossRefGoogle Scholar
  14. 14.
    Wunderlich B, Boller A, Okazaki I, Kreitmeier S (1996) Modulated Differential Scanning Calorimetry in the Glass Transition Region II. The Mathematical Treatment of the Kinetics of the Glass Transition. J Thermal Anal 47: 1013–1026.CrossRefGoogle Scholar
  15. 15.
    Boller A, Okazaki I, Wunderlich B (1996) Modulated Differential Scanning Calorimetry in the Glass Transition Region, III. Evaluation of Polystyrene and Poly(ethylene terephthalate). Thermochim Acta 284: 1–19.CrossRefGoogle Scholar
  16. 16.
    Kovacs AJ (1964) Glass Transitions in Amorphous Polymers. Phenomenological Study. Adv Polymer Sci 3: 394–508.Google Scholar
  17. 17.
    Boller A, Schick C, Wunderlich B (1995) Modulated Differential Scanning Calorimetry in the Glass Transition Region. Thermochim Acta 266: 97–111.CrossRefGoogle Scholar
  18. 18.
    Matsuoka S (1992) Relaxation Phenomena in Polymers. Hanser, Munich.Google Scholar
  19. 19.
    Gaur U, Wunderlich B (1980) Study of Microphase Separation in Block Copolymers of Styrene and α-Methylstyrene in the Glass Transition Region using Quantitative Thermal Analysis. Macromolecules 13: 1618–1625.Google Scholar
  20. 20.
    Suzuki H, Grebowicz J, Wunderlich B (1985) The Glass Transition of Polyoxymethylene. Brit. Polymer J 17: 1–3.Google Scholar
  21. 21.
    Schick C, Wurm A, Mohammed A (2001) Vitrification and Devitrification of the Rigid Amorphous Fraction of Semicrystalline Polymers Revealed from Frequency-dependent Heat Capacity. Colloid Polymer Sci 279: 800–806.CrossRefGoogle Scholar
  22. 22.
    Hellmuth, E, Wunderlich B (1965) Superheating of Linear High-Polymer Polyethylene Crystals. J Appl Phys 36: 3039–3044.CrossRefGoogle Scholar
  23. 23.
    First published: Wunderlich B (1965) Zeitabhängige Vorgänge des Kristallisierens und Erstarrens bei linearen Hochpolymeren. Kunststoffe 55: 333–334.Google Scholar
  24. 24.
    Wunderlich B, Melillo L, Cormier CM, Davidson T, Snyder G (1967) Surface Melting and Crystallization of Polyethylene. J Macromol Sci B1: 485–516.Google Scholar
  25. 25.
    Okazaki I, Wunderlich, B (1997) Reversible Melting in Polymer Crystals Detected by Temperature Modulated Differential Scanning Calorimetry. Macromolecules 30: 1758–1764.CrossRefGoogle Scholar
  26. 26.
    Pak J, Wunderlich B (2000) Thermal Analysis of Paraffins as Model Compounds for Polyethylene. J Polymer Sci, Part B: Polymer Phys 38: 2810–2822.Google Scholar
  27. 27.
    Pak J, Wunderlich B (2001) Melting and Crystallization of Polyethylene of Different Molar Mass by Calorimetry. Macromolecules 34: 4492–4503.CrossRefGoogle Scholar
  28. 28.
    Saruyama Y (1999) Quasi-isothermal Measurement of Frequency Dependent Heat Capacity of Semicrystalline Polyethylene at the Melting Temperature using Light Heating Modulated Temperature DSC. Thermochim Acta 330: 101–107.CrossRefGoogle Scholar
  29. 29.
    Goderis B, Reynaers H, Scherrenberg R, Mathot VBF, Koch MHJ (2001) Temperature Reversible Transitions in Linear Polyethylene Studied by TMDSC and Time-resolved, Temperature-modulated WAXD/SAXS. Macromolecules 34: 1779–1787.CrossRefGoogle Scholar
  30. 30.
    Nukuchina Y, Itoh Y, Fischer EW (1965) Nachweis des partiellen Schmelzens von Polyäthylen Einkristallen mit Hilfe der Röntgenkleinwinkelstreuung. J Polymer Sci B3: 383–387.Google Scholar
  31. 31.
    Fischer EW (1972) Effect of Annealing and Temperature on the Morphological Structure of Polymers. Pure Appl Chem 31: 113–131.Google Scholar
  32. 32.
    Schultz JM, Fischer EW, Schaumburg O, Zachmann HA (1980) Small-angle X-ray Scattering Studies of Melting. J Polymer Sci, Polymer Phys Ed 18: 239–240.CrossRefGoogle Scholar
  33. 33.
    Androsch R, Wunderlich, B (2003) Specific Reversible Melting of Polyethylene J Polymer Sci, Part B: Polymer Phys 41: 2157–2173.Google Scholar
  34. 34.
    Smith CW, Dole M (1956) Specific Heat of Synthetic High Polymers. VII. Poly(ethylene Terephthalate). J Polymer Sci 20: 37–56.Google Scholar
  35. 35.
    English AD (1984) Macromolecular Dynamics in Solid Poly(ethylene Terephthalate): 1H and 13C Solid State NMR. Macromolecules 17: 2182–2192.Google Scholar
  36. 36.
    Pyda M, Wunderlich B (2000) Reversible and Irreversible Heat Capacity of Poly(trimethylene Terephthalate) Analyzed by Temperature-modulated Differential Scanning Calorimetry. J Polymer Sci, Part B: Polymer Phys 38: 622–631.Google Scholar
  37. 37.
    Sichina WJ (1995) Examination of the Use of Dynamic DSC in the Melting Region, Proc. 24th NATAS Conf in San Francisco, Sept. 10–13, Mikhail SA, ed 24: 123–129.Google Scholar
  38. 38.
    Cheng SZD, Pan R, Wunderlich B (1988) Thermal Analysis of Poly(butylene Terephthalate), its Heat Capacity, Rigid Amorphous Fraction and Transition Behavior. Makro-moleculare Chemie 189: 2443–2458.Google Scholar
  39. 39.
    Cheng SZD, Wunderlich B. (1985) Glass Transition and Melting Behavior of Poly(ethylene-2,6-naphthalene Dicarboxylate). Macromolecules 21: 789–797.Google Scholar
  40. 40.
    Blundell DJ, Buckingham KA (1985) The β-Loss Process in Liquid Crystal Polyesters Containing 2,6-Naphthyl Groups. Polymer 26: 1623–1627.CrossRefGoogle Scholar
  41. 41.
    Sauer BB, Kampert WG, Neal-Blanchard E, Threefoot S, Hsiao BS (2000) Temperature Modulated DSC Studies of Melting and Recrystallization in Polymers Exhibiting Multiple Endotherms. Polymer 41: 1099–1108.CrossRefGoogle Scholar
  42. 42.
    Wurm A, Merzlyakov M, Schick C (2000) Reversible Melting During Crystallization of Polymers Studied by Temperature Modulated Techniques (TMDSC, TMDMA). J Thermal Anal Cal 60: 807–820.Google Scholar
  43. 43.
    Alazideh A, Sohn S, Quinn J, Marand H (2001) Influence of Structural and Topological Constraints on the Crystallization and Melting Behavior of Polymers: 3. Bisphenol A Polycarbonate. Macromolecules 34: 4066–4078.Google Scholar
  44. 44.
    Schick C, Wurm A, Merzlyakov M, Minakov A, Marand H (2001) Crystallization and Melting of Polycarbonate Studied by Temperature-modulated DSC (TMDSC). J Thermal Anal Cal 64: 549–555.Google Scholar
  45. 45.
    Cheng SZD, Wunderlich B (1987) Glass Transition and Melting Behavior of Poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules 20: 1630–1637.Google Scholar
  46. 46.
    Wurm A, Merzlyakov M, Schick C (1999) Crystallization of Polymers Studied by Temperature-modulated Techniques (TMDSC, TMDMA). J Macromolecular Sci, Physics 38: 693–708.Google Scholar
  47. 47.
    Wurm A, Merzlyakov M, Schick C (1999) Isothermal Crystallisation of PCL Studied by Temperature Modulated Dynamic Mechanical and TMDSC Analysis. J Thermal Anal Cal 56: 1155–1161.Google Scholar
  48. 48.
    Schick C, Merzlyakov M, Minakov AA, Wurm A (2000) Crystallization of Polymers Studied by Temperature-modulated Calorimetric Measurements at Different Frequencies. J. Thermal Anal Cal 59: 279–288.Google Scholar
  49. 49.
    Androsch R, Wunderlich B (2001) Reversible Crystallization and Melting at the Lateral Surface of Isotactic Polypropylene Crystals. Macromolecules 34: 5950–5960.Google Scholar
  50. 50.
    Grebowicz J, Lau S-F, Wunderlich B (1984) The Thermal Properties of Polypropylene. J Polymer Sci Symp 71: 19–37.Google Scholar
  51. 51.
    Wang ZG, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD, Stein RS (2001) Isothermal Crystallization and Melting of Isotactic Polypropylene Analyzed by Time-and Temperature-dependent Small-angle X-ray Scattering Experiments Polymer 42: 7561–7566.Google Scholar
  52. 52.
    Hu WB, Albrecht T, Strobl G (1999) Reversible Surface Melting of PE and PEO Crystallites Indicated by TMDSC. Macromolecules 32: 7548–7554.Google Scholar
  53. 53.
    Androsch R, Wunderlich B (2001) The Heat of Reversible Crystallization and Melting of Isotactic Polypropylene. Macromolecules 34: 8384–8387.Google Scholar
  54. 54.
    Schick C, Mohammed A, Wurm A (2001) Vitrification and Devitrification of the Rigid Amorphous Fraction in Semicrystalline Polymers Revealed from Frequency Dependent Heat Capacity. Proc 29th NATAS Conf in St. Louis, eds Kociba KJ, Kociba BJ, 29: 639–644.Google Scholar
  55. 54.
    Wang ZG, Hsiao BS, Sauer BB, Kampert WG (1999) The Nature of Secondary Crystallization in Poly(ethylene Terephthalate). Polymer 40: 4615–4627.Google Scholar
  56. 55.
    Adamovsky SA, Minakov AA, Schick C (2003) Scanning Microcalorimetry at High Cooling Rate. Thermochim Acta 403: 55–63.CrossRefGoogle Scholar
  57. 56.
    Jaffe M, Wunderlich B (1967) Melting of Polyoxymethylene. Kolloid Z Z Polym 216–217: 203.Google Scholar
  58. 57.
    Cheng SZD, Cao M-Y, Wunderlich B (1986) Glass Transition and Melting of PEEK. Macromolecules 19: 1868–1876.Google Scholar
  59. 58.
    Marand H, Alizadeh A, Farmer R, Desai R, Velikov V (2000) Influence of Structural and Topological Constraints on the Crystallization and Melting Behavior of Polymers. 2. Poly(arylene Ether Ether Ketone). Macromolecules 33: 3392–3403.CrossRefGoogle Scholar
  60. 59.
    Wurm A, Merzlyakov M, Schick C (1998) Reversible Melting Probed by Temperature-modulated Dynamic Mechanical and Calorimetric Measurements. J Colloid Polymer Sci 276: 289–296.Google Scholar
  61. 60.
    Höhne GWH, Kurelec L (2001) Temperature-modulated Differential Scanning Calorimetric Measurements on Nascent Ultra-high Molecular Mass Polyethylene. Thermochim Acta 377: 141–150.Google Scholar
  62. 61.
    Cheng J, Fone M, Fu Y, Chen W (1996) Variable-temperature Study of a Gel-spun Ultra-high-molecular-mass Polyethylene Fiber by Solid State NMR. J Thermal Analysis 47: 673–683.Google Scholar
  63. 62.
    Pak J, Wunderlich B (2004) Reversible Melting of Gel-spun Fibers of Polyethylene. Thermochim Acta 421: 203–209.CrossRefGoogle Scholar
  64. 63.
    Kwon YK, Boller A, Pyda M, Wunderlich B (2000) Melting and Heat Capacity of Gelspun, Ultra-high-molar-mass Polyethylene Fibers. Polymer 41: 6237–6249.CrossRefGoogle Scholar
  65. 64.
    Todoki M, Kawaguchi Y (1977) Origin of Double Melting Peaks in Drawn Nylon 6 Yarns. J Polymer Sci, Polymer Phys Ed 15: 1067–1075.Google Scholar
  66. 65.
    Todoki M, Kawaguchi Y (1977) Melting of Constrained Drawn Nylon 6 Yarns. J Polymer Sci, Polymer Phys Ed 15: 1507–1520.Google Scholar
  67. 66.
    Okazaki I, Wunderlich B (1996) Modulated Differential Scanning Calorimetry in the Glass Transition Region, V. Activation Energies and Relaxation Times of Poly(ethylene terephthalate)s. J Polymer Sci Part B: Polymer Phys 34: 2941–2952.Google Scholar
  68. 67.
    Okazaki I, Wunderlich B (1997) Modulated Differential Scanning Calorimetry in the Glass Transition Region, VI. Model Calculations Based on Poly(ethylene Terephthalate). J Thermal Anal. 49: 57–70.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations