Differential Scanning Calorimetry Heat Capacity Dynamic Mechanical Analysis Heat Capacity Measurement Differential Scanning Calorimetry Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General References: Specific References

  1. 1.
    The Proceedings of the International Conferences on Thermal Analysis (and Calorimetry) can be found in book form under the title: Thermal Analysis. Various publ and edts, 1965, 1969, 1972, 1975, 1977, 1980, 1982. More recent proceedings are published in: Thermochim Acta (1985) 92/93; (1988) 133/135; J Thermal Anal Cal (1993) 40, (1997) 49, (2001) 64.Google Scholar
  2. 2.
    Proceedings of the annual NATAS Conferences, changing eds, for example:. Kociba KJ, Kociba BJ, eds (2002) Proc. 30th NATAS Conf in Pittsburgh, PA, Sept 23–25, vol 30. Since 2003 the proceedings are issued on CD.Google Scholar
  3. 3.
    The ITS 90 was initiated on Jan 1, 1990 and is described by Preston-Thomas H, Quinn TJ (1992) The International Temperature Scale of 1990: Parts I and II. In: Murray TP, Shepard RL, eds (1992) Temperature: Its Measurement and Control in Science and Industry, Vol 6, Part 1. Am Inst Physics, New York pp 63–74. See also Preston-Thomas H (1990) Metrologia 27: 3. See there also for the conversion of the IPTS 68 and earlier scales to the ITS 90.Google Scholar
  4. 4.
    Lavoisier AL (1789) translated by Kerr R (1790) Elements of Chemistry. Part III, Chap III. Edinburgh. Frequently reprinted, for example, printed as a facsimile: (1965) Dover Publications, New York.Google Scholar
  5. 5.
    For the original paper on the ice calorimeter, see: Bunsen R (1870) Ann Phys 141: 1.Google Scholar
  6. 6.
    Updyke J, Gay C, Schmidt HH (1966) Improved Precision Ice Calorimeter. Rev Sci Instr, 37: 1010–1013.Google Scholar
  7. 7.
    Southard JC (1941) A Modified Calorimeter for High Temperatures. The Heat Content of Silica, Wollastonite and Thorium Dioxide above 25°. J Am Chem Soc 63: 3142–3146.Google Scholar
  8. 8.
    Sunner S, Manson M (1979) Experimental Chemical Thermodynamics, Vol 1, Combustion Calorimetry. Pergamon, Oxford, 1979.Google Scholar
  9. 9.
    Nernst W (1911) Der Energieinhalt fester Stoffe. Ann Phys 36: 395–439; see also Lindemann FA, Koref F, Nernst W, (1910) Untersuchungen an specifischen Wärmen bei tiefen Temperaturen. I and II. Sitzber kgl preuss Akad Wiss 12(13): 247–292.Google Scholar
  10. 10.
    Tasumi M, Matsuo T, Suga H, Seki S (1975) Adiabatic Calorimeter for High-resolution Heat Capacity Measurements in the Temperature Range from 12 to 300 K. Bull Chem Soc, Japan 48: 3060–3066.Google Scholar
  11. 11.
    Oetting FL, West ED (1982) An Adiabatic Calorimeter for the Range 300 to 700 K. J Chem Thermodynamics 14: 107–114.Google Scholar
  12. 12.
    Chang, SS (1976) A Self-balancing Nanovolt Potentiometer System for Thermometry and Calorimetry. J Res Natl Bur Stand 80A: 669–675.Google Scholar
  13. 13.
    Gmelin E, Rödhammer P (1981) Automatic Low Temperature Calorimetry for the Range 0.3–320 K. J Phys E, Instrument 14: 223–238.Google Scholar
  14. 14.
    Tian A (1933) Researches on Calorimetry. Generalization of the Method of Electrical Compensation. Microcalorimetry. J Chim Phys 30: 665–708; and Calvet E (1948) Compensated Differential Microcalorimeter. Compt rend 226:1702–1704.Google Scholar
  15. 15.
    Palermo E, Chiu J (1976) Critical Review of Methods for the Determination of Purity by Differential Scanning Calorimetry. Thermochim Acta 14: 1–12.CrossRefGoogle Scholar
  16. 16.
    Moros SA, Stewart D (1976) Automated and Computerized System for Purity Determination by Differential Scanning Calorimetry. Thermochim Acta 14: 13–24.CrossRefGoogle Scholar
  17. 17.
    Sarge SM, Bauerecker S, Cammenga HK (1988) Calorimetric Determination of Purity by Simulation of DSC Curves. Thermochim Acta 129: 309–324.CrossRefGoogle Scholar
  18. 18.
    Plato C, Glasgow AR, Jr (1969) Differential Scanning Calorimetry as a General Method for Determining the Purity and Heat of Fusion of High-purity Organic Chemicals. Application to 95 compounds. Anal Chem 41: 330–336 (1969).CrossRefGoogle Scholar
  19. 19.
    Wunderlich B, Jin Y (1993) Thermal Properties of the Four Allotropes of Carbon. Thermochim Acta 226: 169–176.CrossRefGoogle Scholar
  20. 20.
    Jin Y, Wunderlich B (1991) The Heat Capacity of n-Paraffins and Polyethylene. J Phys Chem 95: 9000–9007.Google Scholar
  21. 21.
    Watson ES, O'Neill MJ, Justin J, Brenner N (1964) Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis. Anal Chem 36: 1233–1238.Google Scholar
  22. 22.
    Gill PS, Sauerbrunn SR Reading M (1993) Modulated Differential Scanning Calorimetry. J Thermal Anal 40: 931–939.Google Scholar
  23. 23.
    Wunderlich B (1987) Development Towards a Single-Run DSC for Heat Capacity Measurement. J Thermal Anal 32: 1949–1955.CrossRefGoogle Scholar
  24. 24.
    Jin Y, Wunderlich B (1993) Single-run Heat Capacity Measurement by DSC: Principle, Experimental and Data Analysis. Thermochim Acta 226: 155–161.CrossRefGoogle Scholar
  25. 25.
    Jin Y, Wunderlich B (1990,1992) Single Run Heat Capacity Measurements. J Thermal Anal 36: 765–789; II. Experiments at Subambient Temperatures. Ibid 36: 1519–1543; III. Data Analysis. Ibid 38: 2257–2272.Google Scholar
  26. 26.
    Höhne G, Hemminger W, Flammersheim, HJ (2003) Differential Scanning Calorimetry, 2nd edn, Sect 5.4. Springer, BerlinGoogle Scholar
  27. 27.
    Lau SF, Suzuki H, Wunderlich B (1984) The Thermodynamic Properties of Polytetrafluoroethylene. J Polymer Sci, Polymer Phys Ed 22: 379–405.Google Scholar
  28. 28.
    Mathot VBF, Pijpers MFJ (1989) Heat Capacity, Enthalpy, and Crystallinity of Polymers from DSC Measurements and Determination of the DSC Peak Baseline. Thermochim Acta 151: 241–259.CrossRefGoogle Scholar
  29. 29.
    Wunderlich B, Androsch R, Pyda M, Kwon YK (2000) Heat Capacities by Multifrequency Saw-tooth Modulation. Thermochim Acta 348: 181–190.CrossRefGoogle Scholar
  30. 30.
    Moon I, Androsch R, Wunderlich B (2000) A Calibration of the Various Heat-conduction Paths for a Heat-flux-type Temperature-modulated DSC. Thermochim Acta 357/358: 285–291.CrossRefGoogle Scholar
  31. 31.
    Androsch R, Moon I, Kreitmeier K, Wunderlich B (2000) Determination of Heat Capacity with a Sawtooth-type, Power-compensated Temperature-modulated DSC. Thermochim Acta 357/358: 267–278.CrossRefGoogle Scholar
  32. 32.
    Androsch R, Wunderlich B (1999) Temperature-modulated DSC Using Higher Harmonics of the Fourier Transform. Thermochim Acta 333: 27–32.CrossRefGoogle Scholar
  33. 33.
    Pak J, Wunderlich B (2001) Heat Capacity by Sawtooth-modulated, Standard Heat-flux Differential Scanning Calorimeter with Close Control of the Heater Temperature. Thermochim Acta 367/368: 229–238.CrossRefGoogle Scholar
  34. 34.
    Kwon YK, Androsch R, Pyda M, Wunderlich B (2001) Multi-frequency Sawtooth Modulation of a Power-compensation Differential Scanning Calorimeter. Thermochim. Acta 367/368: 203–215.Google Scholar
  35. 35.
    Pyda M, Kwon YK, Wunderlich B (2001) Heat Capacity Measurement by Sawtooth Modulated Standard Heat-flux Differential Scanning Calorimeter with Sample-temperature Control. Thermochim Acta 367/368: 217–227.CrossRefGoogle Scholar
  36. 36.
    Wunderlich B (1997) Modeling the Heat Flow and Heat Capacity of Modulated Differential Scanning Calorimetry. J Thermal Anal 48: 207–224.CrossRefGoogle Scholar
  37. 37.
    Merzlyakov M, Wurm A, Zorzut M, Schick C (1999) Frequency and Temperature Amplitude Dependence of Complex Heat Capacity in the Melting Region of Polymers, J Macromolecular Sci, Phys 38: 1045–1054.Google Scholar
  38. 38.
    Toda A, Tomita C, Hikosaka M (1998) Temperature Modulated DSC of Irreversible Melting of Nylon 6 Crystals. J Thermal Analysis 54: 623–635.Google Scholar
  39. 39.
    Wunderlich B (2003) Reversible Crystallization and the Rigid Amorphous Phase in Semicrystalline Macromolecules. Progr Polym Sci 28: 383–450.CrossRefGoogle Scholar
  40. 40.
    Wunderlich, B, Bodily, DM, Kaplan MH (1964) Theory and Measurement of the Glass-transformation Interval of Polystyrene. J Appl Phys 35: 95–102.Google Scholar
  41. 41.
    For a series of publications on the glass transitions of polystyrene and poly(ethylene terephthalate) see: Modulated Differential Scanning Calorimetry in the Glass Transition Region, written by: Thomas LC, Boller A, Kreitmeier S, Okazaki I, Wunderlich B (1997) J Thermal Analysis 49: 57–70; Thermochim Acta 291: 85–94; (1996) J Polymer Sci, Part B: Polymer Phys 34: 2941–2952; J Thermal Analysis 47: 1013–1026; Thermochim Acta 284: 1–19.Google Scholar
  42. 42.
    van Mele B, Rahier H, van Assche G, Swier S (2004) The Application of Modulated Temperature Differential Scanning Calorimetry for the Characterization of Curing Systems. In Reading M, ed, Basic Theory and Practice for Modulated Temperature Differential Scanning Calorimetry. Kluwer, Dordrecht, The Netherlands, pp 72–152.Google Scholar
  43. 43.
    Schmieder K, Wolf K (1952) The Temperature and Frequency Dependence of the Mechanical Properties of Some High Polymers. Kolloid Z 127: 65–78.CrossRefGoogle Scholar
  44. 44.
    Wurm A, Merzlyakov M, Schick C (2000) Reversible Melting During Crystallization of Polymers Studied by Temperature Modulated Techniques (TMDSC, TMDMA). J Thermal Anal Calorimetry 60: 807–820; see also: (1998) Reversible Melting Probed by Temperature Modulated Dynamic Mechanical and Calorimetric Measurements. J Colloid Polymer Sci 276: 289–296.Google Scholar
  45. 45.
    Schmieder K, Wolf K (1953) Mechanical Relaxation Phenomena in High Polymers. Kolloid Z 134: 149–189.CrossRefGoogle Scholar
  46. 46.
    Duval C (1951) Continuous Weighing in Analytical Chemistry. Anal Chem 23: 1271–1286.CrossRefGoogle Scholar
  47. 47.
    Details on the TGA of Figs. 4. 177–180 are described in: Wiedemann HG (1964) Thermogravimetric Investigations. VI. Universal Device for Gravimetric Determinations under Variable Conditions. Chemie Ing Tech 36: 1105–1114.Google Scholar
  48. 48.
    Zitomer F (1968) Thermogravimetric Mass Spectrometric Analysis. Anal Chem 40: 1091–1095.CrossRefGoogle Scholar
  49. 49.
    Paulik F, Paulik J, Erdey L (1958) The “Derivatograph.” I. An Automatic Recording Apparatus for Simultaneously Conducting Differential Thermal Analysis, Thermogravimetry, and Derivative Thermogravimetry. Z anal Chem 160: 241–252. For standardization, quasi-isothermal and isobaric analyses and some example research with the Derivatograph see also: (1966) Anal Chim Acta 34: 419–426; Paulik F, Paulik J (1973) J Thermal Anal 5: 253–270; (1975) 8: 557–576.Google Scholar
  50. 50.
    Sørensen OT, Rouquerol J, eds (2003) Sample-controlled Thermal Analysis (SCTA): Orign, Goals, Multiple Forms, Applications, and Future. Kluwer, Amsterdam.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations