Precision physics at a neutrino factory

  • A. Blondel
Conference paper


Neutrino beams of unprecedented flux could be produced in a Neutrino Factory from muon decays. In the vicinity of the storage ring, short baseline experiments would perform a new class of precise tests of the theory and original deep-inelastic-scattering (DIS) studies. Thanks to the availability of high energy νe and νe, the long baseline experiments will be capable of very precise measurements of neutrino oscillations, including ability to solve parameter ambiguities and study of leptonic CP violation, for any value of the mixing angle θ13 above a fraction of a degree. Finally, the Neutrino Factory is the first step towards muon colliders.


Neutrino Oscillation Neutrino Beam Charm Production Neutrino Factory Near Detector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ECFA/CERN Studies of an European Neutrino Factory Complex, A. Blondel (ed.) et al.: CERN-2004-002-ECFA-04-230, 2004-002/2004-002.htmlGoogle Scholar
  2. 2.
    S. Geer: Phys. Rev. D 57, 6989 (1998)CrossRefADSGoogle Scholar
  3. 3. Scholar
  4. 4.
    P. Gruber et al.: The Study of a European Neutrino Factory Complex, in [1] p. 7; Feasibility Study on a Neutrino Source Based on a Muon Storage Ring, D. Finley, N. Holtkamp, eds.: (2000), collider/ reports.html; Feasibility Study-II of a Muon-Based Neutrino Source, S. Ozaki, R. Palmer, M. Zisman, J. Gallardo, eds.: BNL-52623, June 2001, available at; M.M. Alsharoá et al.: Phys. Rev. ST Accel. Beams 6, 081001 (2003); Neutrino Factory and Beta Beam Experiments and Developments, (S. Geer, M. Zisman, eds.): Report of the Neutrino Factory and Beta Beam Working Group, APS Multi-Divisional Study of the Physics of Neutrinos, July 2004Google Scholar
  5. 5.
    M. Campanelli et al.: Oscillation Physics with a Neutrino Factory, arXiv:hep-ph/0210192 in [1] p. 138Google Scholar
  6. 6.
    M.L. Mangano et al.: Physics at the front-end of a Neutrino Factory: a quantitative appraisal, arXiv:hep-ph/0105155, in [1] p. 187Google Scholar
  7. 7.
    K. McFarland: these proceedings; G.P. Zeller et al.: CCFR coll., Phys. Rev. Lett. 88, 091802 (2002); hep-ex/0110059CrossRefADSGoogle Scholar
  8. 8.
    A. De Rùjula, M.B. Gavela, P. HernÀndez: Nucl. Phys. B 547, 21 (1999); B. Autin, A. Blondel, J. Ellis (eds.): CERN yellow report CERN 99-02, ECFA 99-197; C.M. Ankenbrandt et al.: Phys. Rev. ST Accel. Beams 2, 081001 (1999); A. Blondel et al.: Nucl. Instr. Meth. Phys. Res. A 451, 102 (2000); C. Albright et al.: FERMILAB-FN-692, hepex/ 0008064; D. Harris et al.: Snowmass 2001 Summary, hep-ph/0111030; A. Cervera et al.: Nucl. Phys. B 579, 17 (2000), Erratum-ibid. B 593, 731–732 2001; M. Koike, J. Sato: Phys. Rev. D 62, 073006 (2000)CrossRefADSGoogle Scholar
  9. 9.
    See for instance S. Kraml et al: Physics opportunities at μ +μ- Higgs factories, in [1], p. 337Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Blondel
    • 1
  1. 1.Département de Physique Nucléaire et corpusculaire, Faculté des SciencesUniversité de GenèveGenève 4Switzerland

Personalised recommendations