Parity violation in nuclear systems

Experimental considerations in the deuteron photodisintegration with polarized photons
  • Efstathios Stiliaris
Conference paper


Experimental measurements of Parity Non-Conserving (PNC) asymmetries in simple nuclear systems represent always a key-tool for the study of the weak nucleon-nucleon interaction and consequently an accurate experimental method for the determination of the meson-nucleon weak coupling constants of the underlying theory. Recent theoretical analysis on the deuteron photodisintegration with polarized photons, a few MeV above threshold, have drastically improved previous theoretical estimates. Based on that, the feasibility of measuring the photon asymmetry A γ in the reaction \( \bar \gamma + d \to n + p \) with the 10-MeV CW Linac at the Institute of Accelerating Systems and Applications (IASA) is considered here. A brief review on previous experimental results obtained in the deuteron photodisintegration and in the thermal-neutron radiative capture on protons (inverse reaction) is given. The most important parameters in the design of a nuclear parity experiment are presented and the crucial factors, such as beam intensity, beam polarization and neutron detection techniques with the required high accuracy are outlined.


Parity Violation Thermal Neutron Capture Polarize Electron Beam Accelerate System Deuteron Photodisintegration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Desplanques, J.F. Donoghue, B.R. Holstein: Ann. Phys. (N.Y.) 124, 449 (1980)CrossRefADSGoogle Scholar
  2. 2.
    B. Desplanques: Phys. Rep. 297, 1 (1998)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    V.M. Lobashov et al.: Nucl. Phys. A 197, 241 (1972)CrossRefADSGoogle Scholar
  4. 4.
    V.A. Knyazkov et al.: Nucl. Phys. A 417, 209 (1984)CrossRefADSGoogle Scholar
  5. 5.
    V.M. Snow et al.: Nucl. Instrum. Methods A 440, 729 (2000)CrossRefADSGoogle Scholar
  6. 6.
    V.M. Snow et al.: Nucl. Instrum. Methods A 515, 563 (2003)CrossRefADSGoogle Scholar
  7. 7.
    E.D. Earle et al.: Can. J. Phys. 66, 534 (1988)ADSGoogle Scholar
  8. 8.
    H.C. Lee: Phys. Rev. Lett. 41, 843 (1978)CrossRefADSGoogle Scholar
  9. 9.
    T. Oka: Phys. Rev. D 27, 523 (1983)CrossRefADSGoogle Scholar
  10. 10.
    I.B. Khriplovich, R.V. Korkin: Nucl. Phys A 690, 610 (2001)CrossRefADSGoogle Scholar
  11. 11.
    C.-P. Liu, C.H. Hyun, B. Desplanques: Phys. Rev. C 69, 065502 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Fujiwara, A.I. Titov: Phys. Rev. C 69, 065503 (2004)CrossRefADSGoogle Scholar
  13. 13.
    B. Wojtsekhowski, W.T.H. van Oers: JLab Letter-Of-Intent 00-002 for PAC 17 (2000)Google Scholar
  14. 14.
    E. Stiliaris et al.: Proceedings of EPAC 2000, IoP, pp. 866–868Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Efstathios Stiliaris
    • 1
    • 2
  1. 1.Physics DepartmentUniversity of AthensAthensGreece
  2. 2.Institute of Accelerating Systems & Applications (IASA)AthensGreece

Personalised recommendations