Advertisement

Parity violation in astrophysics

  • C.J. Horowitz
Conference paper

Abstract

Core collapse supernovae are gigantic explosions of massive stars that radiate 99% of their energy in neutrinos. This provides a unique opportunity for large scale parity or charge conjugation violation. Parity violation in a strong magnetic field could lead to an asymmetry in the neutrino radiation and recoil of the newly formed neutron star. Charge conjugation violation in the neutrino-nucleon interaction reduces the ratio of neutrons to protons in the neutrino driven wind above the neutron star. This is a problem for r-process nucleosynthesis in this wind. On earth, parity violation is an excellent probe of neutrons because the weak charge of a neutron is much larger than that of a proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to precisely measure the neutron radius of 208Pb with parity violating elastic electron scattering. This has many implications for astrophysics, including the structure of neutron stars, and for atomic parity nonconservation experiments.

Keywords

Neutron Star Symmetry Energy Parity Violation Neutron Rich Nucleus Neutrino Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Horowitz, J. Piekarewicz: Nucl. Phys. A 640, 281 (1998)CrossRefADSGoogle Scholar
  2. 2.
    C.J. Horowitz: Phys. Rev. D 65, 083005 (2002)CrossRefADSGoogle Scholar
  3. 3.
    P.A. Souder, R. Michaels, G. Urciuoli, spokespersons: Jefferson Laboratory Experiment E-03-011, See also http://hallaweb.jlab.org/parity/prexGoogle Scholar
  4. 4.
    C.J. Horowitz, S.J. Pollock, P.A. Souder, R. Michaels: Phys. Rev. C 63, 025501 (2001); See also http://cecelia.physics.indiana.edu/prexCrossRefADSGoogle Scholar
  5. 5.
    C.J. Horowitz: Phys. Rev. C 57, 3430 (1998)CrossRefADSGoogle Scholar
  6. 6.
    F.E. Maas et al.: nucl-ex/0410013Google Scholar
  7. 7.
    E.D. Cooper, C.J. Horowitz: to be publishedGoogle Scholar
  8. 8.
    Wood CS, Bennett SC, Cho D, Masterson BP, Roberts JL, Tanner CE, Wieman CE, Science 5307, 1759 (1997)CrossRefGoogle Scholar
  9. 9.
    B.A. Brown: Phys. Rev. Lett. 85, 5296 (2000)CrossRefADSGoogle Scholar
  10. 10.
    J.M. Lattimer, M. Prakash: Science 304, 536 (2004)CrossRefADSGoogle Scholar
  11. 11.
    J. Carriere, C.J. Horowitz, J. Piekarewicz: Astrophys. J. 593, 463 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Jose Pons et al.: Astrophys. J. 564, 981 (2002)CrossRefADSGoogle Scholar
  13. 13.
    C.J. Horowitz, J. Piekarewicz: Phys. Rev. Lett. 86, 5647 (2001)CrossRefADSGoogle Scholar
  14. 14.
    C.J. Horowitz, J. Piekarewicz: Phys. Rev. C 66, 055803 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C.J. Horowitz
    • 1
  1. 1.Nuclear Theory Center and Department of PhysicsIndiana UniversityBloomingtonUSA

Personalised recommendations