Markov Processes and Probability Applications in Analysis


Cauchy Problem Markov Process Wiener Process Exit Time Jump Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chung, K.L. (1960) Markov Chains with Stationary Transition Probabilities. Springer-Verlag, Berlin-Göttingen-HeidelbergGoogle Scholar
  2. Dynkin, E.B. (1963) Markov Processes. Fizmatgiz, Moscow. English transl.: Academic Press, New York, Vols. 1,2, 1965Google Scholar
  3. Feller, W. (1936) Zur Theorie der stochastischen Prozesse (Existenz und Eindeutigkeitssätze). Math. Ann., 113, No. 1, 113–160CrossRefGoogle Scholar
  4. Itô, K. (1944) Stochastic Integral. Proc. Imp. Acad., 20, 519–524Google Scholar
  5. Kac, M. (1949) On distribution of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13Google Scholar
  6. Khinchin, A.Ya. (1937) Asymptotic Methods in Probability Theory. Gostekhizdat, Moscow-LeningradGoogle Scholar
  7. Kolmogorov, A.N. (1931) Über die analytische Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann., 104, 415–458CrossRefGoogle Scholar
  8. Petrovsky, I.G. (1934) Über das Irrfahrproblem. Math. Ann., 109, 425–444CrossRefGoogle Scholar
  9. Venttsel’, A.D. and Freidlin, M.I. (1979) Fluctuations in Randomly Perturbed Dynamical Systems. Nauks, Moscow (Russian)Google Scholar
  10. Wiener, N. (1923) Differential space. J. Math. Phys. Mass. Techn., 2, 131–174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations