Biological Supermolecules — Learning from Nature


Lipid Bilayer Lipid Bilayer Membrane Supramolecular Chemistry Alder Reaction Supramolecular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    D.S. Goodsell, “Biomolecules and Nanotechnology”, Am. Sci., 88, 230 (2000)CrossRefGoogle Scholar
  2. 2.
    G.M. Whitesides, “The Once and Future Nanomachine. Biology Outmatches Futurists’s Most Elaborate Fantasies for Molecular Robots”, Sci. Am., 285, 78 (2001)Google Scholar
  3. 3.
    D.R. Liu, P.G. Schultz, “Generating New Molecular Functions: A Lesson from Nature”, Angew. Chem. Int. Ed., 38, 36 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Walter, J. Buchner, “Molecular Chaperones — Cellular Machines for Protein Folding”, Angew. Chem. Int. Ed., 41, 1098 (2002)CrossRefGoogle Scholar
  5. 5.
    C.M. Niemeyer, “Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science”, Angew. Chem. Int. Ed., 40, 4128 (2001)CrossRefGoogle Scholar
  6. 6.
    H.G. Hansma, K.J. Kim, D.E. Laney, R.A. Garcia, M. Argaman, M.J. Allen, S.M. Parsons, “Properties of Biomolecules Measured from Atomic Force Microscope Images: A Review”, J. Struct. Biol., 119, 99 (1997)CrossRefGoogle Scholar
  7. 7.
    D.F. Blair, “How Bacteria Sense and Swim”, Ann. Rev. Microbiol., 49, 489 (1995)CrossRefGoogle Scholar
  8. 8.
    T. Ikeda, K. Oosawa, H. Hotani, “Self-Assembly of the Filament Capping Protein, FliD, of Bacterial Flagella into an Annular Structure”, J. Mol. Biol., 259, 679 (1996)CrossRefGoogle Scholar
  9. 9.
    N.R. Francis, G.E. Sosinsky, D. Thomas, D.J. Derosier, “Isolation, Characterization and Structure of Bacterial, Flagellar, Motors Containing the Switch Complex”, J. Mol. Biol., 235, 1261 (1994)CrossRefGoogle Scholar
  10. 10.
    M. Welch, K. Oosawa, S.I. Aizawa, M. Eisenbach, “Phosphorylation-Dependent Binding of a Signal Molecule to the Flagellar Switch of Bacteria”, Proc. Natl. Acad. Sci. USA, 90, 8787 (1993)CrossRefGoogle Scholar
  11. 11.
    K. Yonekura, S. Maki-Yonekura, K. Namba, “Complete Atomic Model of the Bacterial Flagellar Filament by Electron Cryomicroscopy”, Nature, 424, 643 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Yanagida, A.H. Iwane, “A Large Step for Myosin”, Proc. Natl. Acad. Sci. USA, 97, 9357 (2000)CrossRefGoogle Scholar
  13. 13.
    H. Tanaka, K. Homma, A.H. Iwane, E. Katayama, R. Ikebe, J. Saito, T. Yanagida, M. Ikebe, “The Motor Domain Determines the Large Step of Myosin-V”, Nature, 415, 192 (2002)CrossRefGoogle Scholar
  14. 14.
    M. L. Walker, S.A. Burgess, J.R. Sellers, F. Wang, J.A. Hammer III, J. Trinick, P.J. Knight, “Two-Headed Binding of a Processive Myosin to F-Actin”, Nature, 405, 804 (2000)CrossRefGoogle Scholar
  15. 15.
    H. Noji, R. Yasuda, M. Yoshida, K. Kinoshita, Jr., “Direct Observation of the Rotation of F1-ATPase”, Nature, 386, 299 (1997)CrossRefGoogle Scholar
  16. 16.
    H. Imamura, M. Nakano, H. Noji, E. Muneyuki, S. Ohkuma, M. Yoshida, K. Yokotama, “Evidence for Rotation of V1-ATPase”, Proc. Natl. Acad. Sci. USA, 100, 2312 (2003)CrossRefGoogle Scholar
  17. 17.
    R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, C.D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor”, Science, 290, 1555 (2000)CrossRefGoogle Scholar
  18. 18.
    I.S. Trowbridge, J.F. Collawn, C.R. Hopkins, “Signal-Dependent Membrane-Protein Trafficking in the Endocytic Pathway”, Ann. Rev. Cell. Biol., 9, 129 (1993)Google Scholar
  19. 19.
    M.S. Bretscher, M.C. Raff, “Mammalian Plasma Membrane”, Nature, 258, 43 (1975)CrossRefGoogle Scholar
  20. 20.
    S.J. Singer, G.L. Nicolson, “Fluid Mosaic Model of Structure of Cell Membranes”, Science, 175, 720 (1972)Google Scholar
  21. 21.
    L.A. Estroff, A.D. Hamilton, “At the Interface of Organic and Inorganic Chemistry: Bioinspired Synthesis of Composite Materials”, Chem. Mater., 13, 3227 (2001)CrossRefGoogle Scholar


  1. 22.
    R. Serrano, M.C. Kielland-Brandt, G.R. Fink, “Yeast Plasma Membrane ATPase Is Essential for Growth and Has Homology with (Na+ + K+), K+ and Ca2+-ATPase”, Nature, 319, 689 (1986)CrossRefGoogle Scholar
  2. 23.
    P.L. Jorgensen, “Mechanism of the Na+, K+ Pump Protein — Structure and Conformations of the Pure (Na+ + K+)-ATPase”, Biochim. Biophys. Acta, 694, 27 (1982)Google Scholar
  3. 24.
    J.B. Lingrel, T. Kuntzweiler, “Na+, K+-ATPase”, J. Biol. Chem., 269, 19659 (1994)Google Scholar
  4. 25.
    E. Neher, “Ion Channels for Communication Between and Within Cells (Nobel Lecture)”, Angew. Chem. Int. Ed., 31, 824 (1992)CrossRefGoogle Scholar
  5. 26.
    B. Sakmann, “Elementary Steps in Synaptic Transmission Revealed by Currents through Single Ion Channels (Nobel Lecture)”, Angew. Chem. Int. Ed., 31, 830 (1992)CrossRefGoogle Scholar
  6. 27.
    J.C. Skou, “The Identification of the Sodium-Potassium Pump (Nobel Lecture)”, Angew. Chem. Int. Ed., 37, 2321 (1998)CrossRefGoogle Scholar
  7. 28.
    G.W. Gokel, O. Murillo, “Synthetic Organic Chemical Models for Transmembrane Channels”, Acc. Chem. Res., 29, 425 (1996)CrossRefGoogle Scholar
  8. 29.
    G.W. Gokel, A. Mukhopadhyay, “Synthetic Models of Cation-Conducting Channels”, Chem. Soc. Rev., 30, 274 (2001)CrossRefGoogle Scholar
  9. 30.
    M.R. Ghadiri, J.R. Granja, L.K. Buehler, “Artificial Transmembrane Ion Channels from Self-Assembling Peptide Nanotubes”, Nature, 369, 301 (1994)CrossRefGoogle Scholar
  10. 31.
    S. Fernandez-Lopez, H.-S. Kim, E.C. Choi, M. Delgado, J.R. Granja, A. Khasanov, K. Kraehenbuehi, G. Long, D.A. Weinberger, K.M. Wilcoxen, M.R. Ghadiri, “Antibacterial Agents Based on the Cyclic D,L-α-Peptide Architecture”, Nature, 412, 452 (2001)CrossRefGoogle Scholar
  11. 32.
    C.F. Vannostrum, S.J. Picken, A.J. Schouten, R.J.M. Nolte, “Synthesis and Supramolecular Chemisry of Novel Liquid-Crystalline Crown Ether-Substituted Phthalocyanines — Toward Molecular Wires and Molecular Electronics”, J. Am. Chem. Soc., 117, 9957 (1995)CrossRefGoogle Scholar
  12. 33.
    T.M. Fyles, D. Loock, X. Zhou, “A Voltage-Gated Ion Channel Based on a Bis-Macrocyclic Bolaamphiphile”, J. Am. Chem. Soc., 120, 2997 (1998)CrossRefGoogle Scholar
  13. 34.
    T.M. Fyles, T.D. James, K.C. Kaye, “Activities and Modes of Action of Artificial Ion-Channel Mimics”, J. Am. Chem. Soc., 115, 12315 (1993)CrossRefGoogle Scholar
  14. 35.
    I. Tabushi, Y. Kuroda, K. Yokota, “A,B,D,F-Tetrasubstituted β-Cyclodextrin as Artificial Channel Compound”, Tetrahedron Lett., 23, 4601 (1982)CrossRefGoogle Scholar
  15. 36.
    J.H. Fuhrhop, U. Liman, H.H. David, “Sealing and Opening Porous Monolayer Vesicle Membranes”, Angew. Chem. Int. Ed., 24, 339 (1985)CrossRefGoogle Scholar
  16. 37.
    Y. Kobuke, K. Ueda, M. Sokabe, “Artificial Nonpeptide Single Ion Channels”, J. Am. Chem. Soc., 114, 7618 (1992)CrossRefGoogle Scholar
  17. 38.
    Y. Tanaka, Y. Kobuke, M. Sokabe, “A Nonpeptidic Ion-Channel with K+ Selectivity”, Angew. Chem. Int. Ed., 34, 693 (1995)CrossRefGoogle Scholar
  18. 39.
    P. Bandyopadhyay, V. Janout, L.-H. Zhang, S.L. Regen, “Ion Conductors Derived from Cholic Acid and Spermine: Importance of Facial Hydrophilicity on Na+ Transport and Membrane Selectivity”, J. Am. Chem. Soc., 123, 7691 (2001)CrossRefGoogle Scholar


  1. 40.
    J.D. Scott, T. Pawson, “Cell Communication: The Inside Story”, Sci. Am. 282, 72 (2000)CrossRefGoogle Scholar
  2. 41.
    T. Pawson, “Protein Modules and Signaling Networks”, Nature, 373, 573 (1995)CrossRefGoogle Scholar
  3. 42.
    T. Pawson, J.D. Scott, “Signaling Through Scaffold, Anchoring, and Adaptor Proteins”, Science, 278, 2075 (1997)CrossRefGoogle Scholar
  4. 43.
    T, Hunter, “Signaling — 2000 and Beyond”, Cell, 100, 113 (2000)CrossRefGoogle Scholar
  5. 44.
    C.L. Waller, T.I. Oprea, K. Chae, H.K. Park, K.S. Korach, S.C. Laws, T.E. Wiese, W.R. Kelce, L.E. Gray, “Ligand-Based Identification of Environmental Estrogens”, Chem. Res. Tox., 9, 1240 (1996)CrossRefGoogle Scholar
  6. 45.
    M. Rodbell, “Role of Hormone Receptors and GTP-Regulatory Proteins in Membrane Transduction”, Nature, 284, 17–22 (1980)CrossRefGoogle Scholar
  7. 46.
    M. Rodbell, “Signal-Transduction — Evolution of an Idea (Nobel Lecture)”, Angew. Chem. Int. Ed., 34, 1420 (1995)CrossRefGoogle Scholar
  8. 47.
    A.G. Gilman, “G-Protein and Regulation of Adenyl-Cyclase (Nobel Lecture)”, Angew. Chem. Int. Ed., 34, 1406 (1995)CrossRefGoogle Scholar
  9. 48.
    J. Kikuchi, K. Ariga, K. Ikeda, “Signal Transduction Mediated by Artificial Cell-Surface Receptors: Activation of Lactate Dehydrogenase Triggered by Molecular Recognition and Phase Reorganization of Bile Acid Derivatives Embedded in a Synthetic Bilayer Membrane”, Chem. Commun., 547 (1999)Google Scholar
  10. 49.
    J. Kikuchi, K. Ariga, T. Miyazaki, K. Ikeda, “An Artificial Signal Transduction System. Control of Lactate Dehydrogenase Activity Performed by an Artificial Cell-Surface Receptor”, Chem. Lett., 253 (1999)Google Scholar


  1. 50.
    J. Deisenhofer, H. Michel, “The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas-Viridis (Nobel Lecture)”, Angew. Chem. Int. Ed., 28, 829 (1989)CrossRefGoogle Scholar
  2. 51.
    R. Huber, “A Structural Basis of Light Energy and Electron-Transfer in Biology (Nobel Lecture)”, Angew. Chem., Int. Ed., 28, 848 (1989)CrossRefGoogle Scholar
  3. 52.
    G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, N.W. Isaacs, “Crystal-Structure of an Integral Membrane Light-Harvesting Complex from Photosynthetic Bacteria”, Nature, 374, 517 (1995)CrossRefGoogle Scholar
  4. 53.
    J. Koepke, X.C. Hu, C. Muenke, K. Schulten, H. Michel H, “The Crystal Structure of the Light-Harvesting Complex II (B800–850) from Rhodospirillum Molischianum”, Structure, 4, 581 (1996)CrossRefGoogle Scholar
  5. 54.
    S. Karrasch, P.A. Bullough, R. Ghosh, “The 8.5-Angstrom Projection MAP of the Light-Harvesting Complex-1 from Rhodospirillum rubrum Reveals a Ring Composed of 16 Subunits”, EMBO J., 14, 631 (1995)Google Scholar
  6. 55.
    J.E. Walker, “ATP Synthesis by Rotary Catalysis (Nobel Lecture)”, Angew. Chem. Int. Ed., 37, 2309 (1998)CrossRefGoogle Scholar
  7. 56.
    I. Yamazaki, N. Tamai, T. Yamazaki, “Electronic Excitation Transfer in Organized Molecular Assemblies”, J. Phys. Chem., 94, 516 (1990)CrossRefGoogle Scholar
  8. 57.
    G. Steinberg-Yfrach, P.A. Liddell, S.-C. Hung, A.L. Moore, D. Gust, T.A. Moore, “Conversion of Light Energy to Proton Potential in Liposomes by Artificial Photosynthetic Reaction Centres”, Nature, 385, 239 (1997)CrossRefGoogle Scholar
  9. 58.
    G. Steinberg-Yfrach, J.L. Rigaud, E.N. Durantini, A.L. Moore, D. Gust, T.A. Moore, “Light-Driven Production of ATP Catalysed by F0F1-ATP Synthase in an Artificial Photosynthetic Membrane”, Nature, 392, 479 (1998)CrossRefGoogle Scholar
  10. 59.
    D. Kuciauskas, P.A. Liddell, S. Lin, T.E. Johnson, S.J. Weghorn, J.S. Lindsey, A.L. Moore, T.A. Moore, D. Gust, “An Artificial Photosynthetic Antenna-Reaction Center Complex”, J. Am. Chem. Soc., 121, 8604 (1999)CrossRefGoogle Scholar
  11. 60.
    R. Takahashi, Y. Kobuke, “Hexameric Macroring of Gable-Porphyrins as a Light-Harvesting Antenna Mimic”, J. Am. Chem. Soc., 125, 2372 (2003)CrossRefGoogle Scholar
  12. 61.
    M.D. Ward, “Photo-Induced Electron and Energy Transfer in Non-Covalently Bonded Supramolecular Assemblies”, Chem. Soc. Rev., 26, 365 (1997)CrossRefGoogle Scholar
  13. 62.
    C.A. Hunter, R.K. Hyde, “Photoinduced Energy and Electron Transfer in Supramolecular Porphyrin Assemblies”, Angew. Chem. Int. Ed., 35, 1936 (1996)CrossRefGoogle Scholar
  14. 63.
    A. Nakano, A. Osuka, I. Yamazaki, T. Yamazaki, Y. Nishimura, “Windmill-Like Porphyrin Arrays as Potent Light-Harvesting Antenna Complexes”, 37, 3023 (1998)Google Scholar
  15. 64.
    L.C. Sun, L. Hammarstrom, B. Akermark, S. Styring, “Towards Artificial Photosynthesis: Ruthenium-Manganese Chemistry for Energy Production”, Chem. Soc. Rev., 30, 36 (2001)CrossRefGoogle Scholar
  16. 65.
    F. Diederich, M. Gomez-Lopez, “Supramolecular Fullerene Chemistry”, Chem. Soc. Rev., 28, 263 (1999)CrossRefGoogle Scholar
  17. 66.
    H.L. Anderson, “Building Molecular Wires from the Colours of Life: Conjugated Porphyrin Oligomers”, Chem. Commun., 2323 (1999)Google Scholar


  1. 67.
    D.W. Christianson, W.N. Lipscomb, “Carboxypeptidase A”, Acc. Chem. Res., 22, 62 (1989)CrossRefGoogle Scholar
  2. 68.
    W.N. Lipscomb, “Enzymatic Activities of Carboxypeptidase A’s in Solution and in Crystals”, Proc. Natl. Acad. Sci. USA, 70, 3797 (1973)CrossRefGoogle Scholar
  3. 69.
    I. Tabushi, “Cyclodextrin Catalysis as a Model for Enzyme Action”, Acc. Chem. Res., 15, 66 (1982)CrossRefGoogle Scholar
  4. 70.
    V.T. D’Souza, M.L. Bender, “Miniature Organic Models of Enzymes”, Acc. Chem. Res., 20, 146 (1987)CrossRefGoogle Scholar
  5. 71.
    R. Breslow, “Biomimetic Chemistry and Artificial Enzymes: Catalysis by Design”, Acc. Chem. Res., 28, 146 (1995)CrossRefGoogle Scholar
  6. 72.
    R. Breslow, S.D. Dong, “Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives”, Chem. Rev., 98, 1997 (1998)CrossRefGoogle Scholar
  7. 73.
    Y. Murakami, J. Kikuchi, Y. Hisaeda, O. Hayashida, “Artificial Enzymes”, Chem. Rev., 96, 721 (1996)CrossRefGoogle Scholar
  8. 74.
    M. Komiyama, M.L. Bender, M. Utaka, A. Takeda, “Model for “Charge-Relay”: Acceleration by Carboxylate Anion in Intramolecular General Base-Catalyzed Ester Hydrolysis by the Imidazolyl Group”, Proc, Natl. Acad. Sci. USA, 74, 2634 (1977)CrossRefGoogle Scholar
  9. 75.
    T.C. Bruice, S.J. Benkovic, “Chemical Basis for Enzyme Catalysis”, Biochemistry, 39, 6267 (2000)CrossRefGoogle Scholar
  10. 76.
    I. Hamachi, R. Eboshi, J. Watanabe, S. Shinkai, “Guest-Induced Umpolung on a Protein Surface: A Strategy for Regulation of Enzymatic Activity”, J. Am. Chem. Soc., 122, 4530 (2000)CrossRefGoogle Scholar
  11. 77.
    G. Wulff, “Enzyme-Like Catalysis by Molecularly Imprinted Polymers”, Chem. Rev., 102, 1 (2002)CrossRefGoogle Scholar
  12. 78.
    T. Kunitake, T. Sakamoto, “Influence of the Fluidity of Dialkylammonium Bilayer Membranes on the Catalytic Hydrolysis of para-Nitrophenyl Palmitate”, Chem. Lett., 1059 (1979)Google Scholar
  13. 79.
    Y. Okahata, R. Ando, T. Kunitake, “Catalytic Hydrolysis of para-Nitrophenyl Esters in the Presence of Representative Ammonium Aggregates — Specific Activation of a Cholesteryl Nucleophile Bound to A Dialkylammonium Bilayer Membrane”, Bull. Chem. Soc. Jpn., 52, 3647 (1979)CrossRefGoogle Scholar
  14. 80.
    Y. Murakami, A. Nakano, H. Ikeda, T. Imori, K. Akiyoshi, “Aggregation Behavior of Amphiphiles Functionalized with Dipeptide Segments and Enantioselective Ester Hydrolysis in Their Bilayer Membranes”, Bull. Chem. Soc. Jpn., 58, 172 (1985)CrossRefGoogle Scholar
  15. 81.
    R. Ueoka, Y. Matsumoto, R.A. Moss, S. Swarup, A. Sugii, K. Harada, J. Kikuchi, Y. Murakami, “Membrane Matrix for the Hydrolysis of Amino Acid Esters with Marked Enantioselectivity”, J. Am. Chem. Soc., 110, 1588 (1988)CrossRefGoogle Scholar


  1. 82.
    N. Borkakoti, “The Active Site of Ribonuclease A from the Crystallographic Studies of Ribonuclease A Inhibitor Complexes”, Eur. J. Biochem., 132, 89 (1983)CrossRefGoogle Scholar
  2. 83.
    A. Wlodawer, M. Miller, L. Sjölin, “Active Site of RNase — Neutron-Diffraction Study of a Complex with Uridine Vanadate, a Transition-State Analog”, Proc. Natl. Acad. Sci. USA, 80, 3628 (1983)CrossRefGoogle Scholar
  3. 84.
    E. Anslyn, R. Breslow, “On the Mechanism of Catalysis by Ribonuclease — Cleavage and Isomerization of the Dinucleotide UpU Catalyzed by Imidazole Buffers”, J. Am. Chem. Soc., 111, 4473 (1989)CrossRefGoogle Scholar
  4. 85.
    R. Breslow, J.B. Doherty, G. Guillot, C. Lipsey, “β-Cyclodextrinylbisimidazole, a Model for Ribonuclease”, J. Am. Chem. Soc., 100, 3227 (1978)CrossRefGoogle Scholar
  5. 86.
    E. Anslyn, R. Breslow, “Geometric Evidence on the Ribonuclease Model Mechanism”, J. Am. Chem. Soc., 111, 5972 (1989)CrossRefGoogle Scholar
  6. 87.
    R. Breslow, “Studies in Biomimetic Chemistry”, Pure Appl. Chem., 70, 267 (1998)Google Scholar
  7. 88.
    F.A. Cotton, E.E. Hazen, M.J. Legg, “Staphylococcal Nuclease — Proposed Mechanism of Action Based on Structure of Enzyme-Thymidine 3′,5′-Bisphophate-Calcium Ion Complex at 1.5 Å Resolution”, Proc. Natl. Acad. Sci. USA, 76, 2551 (1979)CrossRefGoogle Scholar
  8. 89.
    J. Smith, K. Ariga, E.V. Anslyn, “Enhanced Imidazole-Catalyzed RNA Cleavage Induced by a Bis-Alkylguanidinium Receptor”, J. Am. Chem. Soc., 115, 362 (1993)CrossRefGoogle Scholar
  9. 90.
    D.M. Kneeland, K. Ariga, V.M. Lynch, C.Y. Huang, E.V. Anslyn, “Bis(alkylguanidinium) Receptors for Phosphodiesters: Effect of Counterions, Solvent Mixtures, and Cavity Flexibility on Complexation”, J. Am. Chem. Soc., 115, 10042 (1993)CrossRefGoogle Scholar
  10. 91.
    K. Ariga, E.V. Anslyn, “Manipulating the Stoichiometry and Strength of Phosphodiester Binding to a Bisguanidine Cleft in DMSO/Water Solutions”, J. Org. Chem., 57, 417 (1992)CrossRefGoogle Scholar
  11. 92.
    M.D. Best, S.L. Tobey, E.V. Anslyn, “Abiotic Guanidinium Containing Receptors for Anionic Species”, Coordin. Chem. Rev., 240, 3 (2003)Google Scholar
  12. 93.
    H. Ait-Haddou, J. Sumaoka, S.L. Wiskur, J.F. Folmer-Andersen, E.V. Anslyn, “Remarkable Cooperativity between a Zn-II Ion and Guanidinium/Ammonium Groups in the Hydrolysis of RNA”, Angew. Chem. Int. Ed., 41, 4014 (2002)Google Scholar
  13. 94.
    V. Jubian, R.P. Dixon, A.D. Hamilton, “Molecular Recognition and Catalysis — Acceleration of Phosphodiester Cleavage by a Simple Hydrogen-Bonding Receptor”, J. Am. Chem. Soc., 114, 1120 (1992)CrossRefGoogle Scholar
  14. 95.
    M. Komiyama, N. Takeda, H. Shigekawa, “Hydrolysis of DNA and RNA by Lanthanide Ions: Mechanistic Studies Leading to New Applications”, Chem. Commun., 1443 (1999)Google Scholar
  15. 96.
    K. Matsuura, M. Endo, M. Komiyama, “Lanthanide Complex-Oligo-DNA Hybrid for Sequence-Selective Hydrolysis of RNA”, J. Chem. Soc., Chem. Commun., 2019 (1994)Google Scholar
  16. 97.
    M. Komiyama, “Sequence-Specific and Hydrolytic Scission of DNA and RNA by Lanthanide Complex-OligoDNA Hybrid”, J. Biochem., 118, 665 (1995)Google Scholar


  1. 98.
    A. Tramontano, K.D. Janda, R.A. Lerner, “Catalytic Antibodies”, Science, 234, 1566 (1986)Google Scholar
  2. 99.
    R.A. Lerner, S.J. Benkovic, P.G. Schultz, “At the Crossroads of Chemistry and Immunology: Catalytic Antibodies”, Science, 252, 659 (1991)Google Scholar
  3. 100.
    T.S. Scanlan, J.R. Prudent, P.G. Schultz, “Antibody-Catalyzed Hydrolysis of Phosphate Monoesters”, J. Am. Chem. Soc., 113, 9397 (1991)CrossRefGoogle Scholar
  4. 101.
    P.G. Schultz, R.A. Lerner, “From Molecular Diversity to Catalysis: Lessons from the Immune System”, Science, 269, 1835 (1995)Google Scholar
  5. 102.
    P.G. Schultz, J. Yin, R.A. Lerner, “The Chemistry of the Antibody Molecule”, Angew. Chem. Int. Ed., 41, 4427 (2002)CrossRefGoogle Scholar
  6. 103.
    B.L. Iverson, S.A. Iverson, V.A. Roberts, E.D. Getzoff, J.A. Tainer, S.J. Benkovic, R.A. Lerner, “Metalloantibodies”, Science, 249, 659 (1990)Google Scholar
  7. 104.
    J.D. Stewart, S.J. Benkovic, “Transition-State Stabilization as a Measure of the Efficiency of Antibody Catalysis”, Nature, 375, 388 (1995)CrossRefGoogle Scholar
  8. 105.
    F. Tanaka, “Catalytic Antibodies as Designer Proteases and Esterases”, Chem. Rev., 102, 4885 (2002)CrossRefGoogle Scholar
  9. 106.
    D. Hilvert, “Critical Analysis of Antibody Catalysis”, Ann. Rev. Biochem., 69, 751 (2000)CrossRefGoogle Scholar
  10. 107.
    J.D. Stevenson, N.R. Thomas, “Catalytic Antibodies and Other Biomimetic Catalysts”, Nat. Prod. Rep., 17, 535 (2000)CrossRefGoogle Scholar


  1. 108.
    K. Kruger, P.J. Grabowski, A.J. Zaug, J. Sands, D.E. Gottschling, T.R. Chech, “Self-Splicing RNA: Autoexcision and Autocyclization of the Ribosomal RNA Intervening Sequence of Tetrahymena”, Cell, 31, 147 (1982)CrossRefGoogle Scholar
  2. 109.
    J.A. Doudna, T.R. Cech, “The Chemical Repertoire of Natural Ribozymes”, Nature, 418, 222 (2002)CrossRefGoogle Scholar
  3. 110.
    D.-M. Zhou, K. Taira, “The Hydrolysis of RNA: From Theoretical Calculations to the Hammerhead Ribozyme-Mediated Cleavage of RNA”, Chem. Rev., 98, 991 (1998)CrossRefGoogle Scholar
  4. 111.
    R.G. Kuimelis, L.W. McLaughin, “Mechanism of Ribozyme-Mediated RNA Cleavage”, Chem. Rev., 98, 1027 (1998)CrossRefGoogle Scholar
  5. 112.
    P.J. Unrau, D.P. Bartel, “RNA-Catalysed Nucleotide Synthesis”, Nature, 395, 260 (1998)CrossRefGoogle Scholar
  6. 113.
    D.H. Mathews, J. Sabina, M. Zucker, D.H. Turner, “Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure”, J. Mol. Biol., 288, 911 (1999)CrossRefGoogle Scholar
  7. 114.
    K.R. Birikh, P.A. Heaton, F. Eckstein, “The Structure, Function and Application of the Hammerhead Ribozyme”, Eur. J. Biochem., 245, 1 (1997)CrossRefGoogle Scholar
  8. 115.
    C. Guerrier-Takada, K. Gardiner, T. Marsh, N. Pace, S. Altman, “The RNA Moiety of Ribonuclease-P is the Catalytic Subunit of the Enzyme”, Cell, 35, 849 (1983)CrossRefGoogle Scholar
  9. 116.
    S. Altman, “Ribonuclease P — An Enzyme with a Catalytic RNA Subunit”, Adv. Enzymol., 62, 1 (1989)Google Scholar


  1. 117.
    M.H.J. Ohlmeyer, R.N. Swanson, L.W. Dillard, J.C. Reader, G. Asouline, R. Kobayashi, M. Wigler, W.C. Still, “Complex Synthetic Chemical Libraries Indexed with Molecular Tags”, Proc. Natl. Acad. Sci. USA, 90, 10922 (1993)CrossRefGoogle Scholar
  2. 118.
    F. Guillier, D. Orain, M. Bradley, “Linkers and Cleavage Strategies in Solid-Phase Organic Synthesis and Combinatorial Chemistry”, Chem. Rev., 100, 2091 (2000)CrossRefGoogle Scholar
  3. 119.
    L.A. Thompson, J.A. Ellman, “Synthesis and Applications of Small Molecule Libraries”, Chem. Rev., 96, 555 (1996)CrossRefGoogle Scholar
  4. 120.
    R.J. Booth, J.C. Hodge, “Solid-Supported Reagent Strategies for Rapid Purification of Combinatorial Synthesis Products”, Acc. Chem. Res., 32, 18 (1999)CrossRefGoogle Scholar
  5. 121.
    S. Otto, R.L.E. Furlan, J.K.M. Sanders, “Selection and Amplification of Hosts from Dynamic Combinatorial Libraries of Macrocyclic Disulfides”, Science, 297, 590 (2002)CrossRefGoogle Scholar
  6. 122.
    I. Huc, J.-M. Lehn, “Virtual Combinatorial Libraries: Dynamic Generation of Molecular and Supramolecular Diversity by Self-Assembly”, Proc, Natl. Acad. Sci. USA, 94, 2106 (1997)CrossRefGoogle Scholar
  7. 123.
    D.B. Kassel, “Combinatorial Chemistry and Mass Spectrometry in the 21st Century Drug Discovery Laboratory”, Chem. Rev., 101, 255 (2001)CrossRefGoogle Scholar
  8. 124.
    S.L. Schreiber, “Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery”, Science, 287, 1964 (2000)CrossRefGoogle Scholar
  9. 125.
    A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, S.P.A. Fodor, “Light-Generated Oligonucleotide Arrays for Rapid DNA-Sequence Analysis”, Proc. Natl. Acad. Sci. USA, 91, 5022 (1994)CrossRefGoogle Scholar
  10. 126.
    Y. Ito, S. Fujita, N. Kawazoe, Y. Imanishi, “Competitive Binding Assay for Thyroxine Using In Vitro Selected Oligonucleotides”, Anal. Chem., 70, 3510 (1998)CrossRefGoogle Scholar
  11. 127.
    B.M. Chowrira, A. Berzalherranz, J.M. Burke, “Novel Guanosine Requirement for Catalysis by the Hairpin Ribozyme”, Nature, 354, 320 (1991)CrossRefGoogle Scholar
  12. 128.
    J.K. Scott, G.P. Smith, “Searching for Peptide Ligandswith an Epitode Library”, Science, 249, 386 (1990)Google Scholar
  13. 129.
    T.M. Tarasow, S.L. Tarasow, B.E. Eaton, “RNA-Catalysed Carbon-Carbon Bond Formation”, Nature, 389, 54 (1997)CrossRefGoogle Scholar
  14. 130.
    M.T. Reetz, “Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts”, Angew. Chem. Int. Ed., 40, 284 (2001)CrossRefGoogle Scholar
  15. 131.
    S.E. Osborne, A.D. Ellington, “Nucleic Acid Selection and the Challenge of Combinatorial Chemistry”, Chem. Rev., 97, 349 (1997)CrossRefGoogle Scholar
  16. 132.
    N. Nemoto, E. Miyamoto-Sato, Y. Husimi, H. Yanagawa, “In Vitro Virus: Bonding of mRNA Bearing Puromycin at the 3′-Terminal End to the C-Terminal End of Its Encoded Protein on the Ribosome In Vitro”, FEBS Lett., 414, 405 (1997)CrossRefGoogle Scholar
  17. 133.
    D.S. Wilson, J.W. Szostak, “In Vitro Selection of Functional Nucleic Acids”, Ann. Rev. Biochem., 68, 611 (1999)CrossRefGoogle Scholar
  18. 134.
    G.P. Smith, V.A. Petrenko, “Phage Display”, Chem. Rev., 97, 391 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations