Applications of Supermolecules — Molecular Devices and Nanotechnology


Crown Ether Molecular Device Molecular Recognition Quartz Crystal Microbalance Photoinduced Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    G. Stix, “Little Big Science”, Sci. Am., 285, 32 (2001)Google Scholar
  2. 2.
    K.E. Drexler, “Machine-Phase Nanotechnology”, Sci. Am., 285, 74 (2001)Google Scholar
  3. 3.
    R.E. Smalley, “Of Chemistry, Love and Nanobots”, Sci. Am., 285, 76 (2001)Google Scholar
  4. 4.
    N. Mathur, “Beyond the Silicon Roadmap”, Nature, 419, 573 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Schulz, “The End of the Road for Silicon”, Nature, 399, 729 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Aviram, M.A. Ratner, “Molecular Rectifiers”, Chem. Phys. Lett., 29, 277 (1974)CrossRefGoogle Scholar
  7. 7.
    F.L. Carter, “Molecular-Level Fabrication Techniques and Molecular Electronic Devices”, J. Vac. Sci. Technol. B, 1, 959 (1983)CrossRefGoogle Scholar
  8. 8.
    J.S. Lindsey, “Self-Assembly in Synthetic Route to Molecular Devices — Biological Principles and Chemical Perspectives — A Review”, New. J. Chem., 15, 153 (1991)Google Scholar


  1. 9.
    K. Ariga, T. Kunitake, “Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction”, Acc. Chem. Res., 31, 371 (1988)CrossRefGoogle Scholar
  2. 10.
    G.A. Ozin, “Nanochemistry — Synthesis in Diminishing Dimensions”, Adv. Mater., 4, 612 (1992)CrossRefGoogle Scholar
  3. 11.
    P.K. Hansma, J. Tersoff, “Scanning Tunneling Microscopy”, J. Appl. Phys., 61, R1 (1987)CrossRefGoogle Scholar
  4. 12.
    H.G. Hansma, J.H. Hoh, “Biomolecular Imaging with Atomic-Force Microscope”, Ann. Rev. Biophys. Biomol. Struc., 23, 115 (1994)CrossRefGoogle Scholar
  5. 13.
    Z.F. Shao, J. Mou, D.M. Czajkowski, J. Yang, J.Y. Yuan, “Biological Atomic Force Microscopy: What is Achieved and What is Needed”, Adv, Phys., 45, 1 (1996)CrossRefGoogle Scholar
  6. 14.
    F.-R.F. Fan, A.J. Bard, “STM on Wet Insulators: Electrochemistry or Tunneling?”, Science, 270, 1849 (1995)Google Scholar
  7. 15.
    Y. Ebara, H. Ebato, K. Ariga, Y. Okahata, “Interactions of Calcium Ions with Phospholipid Membranes. Studies on π-A Isotherms and Electrochemical and Quartz-Crystal Microbalance Measurements”, Langmuir, 10, 2267 (1994)CrossRefGoogle Scholar
  8. 16.
    M.T. Rojas, R. Koniger, J.F. Stoddart, A.E. Kaifer, “Supported Monolayers Containing Preformed Binding Sites — Synthesis and Interfacial Binding Properties of a Thiolated β-Cyclodextrin Derivative”, J. Am. Chem. Soc., 117, 336 (1995)CrossRefGoogle Scholar
  9. 17.
    K. Odashima, M. Kotato, M. Sugawara, Y. Umezawa, “Voltammetric Study on a Condensed Monolayer of a Long Alkyl Cyclodextrin Derivative as a Channel Mimetic Sensing Membrane”, Anal. Chem., 65, 927 (1993)CrossRefGoogle Scholar
  10. 18.
    J. Homola, S.S. Yee, G. Gauglitz, “Surface Plasmon Resonance Sensors: Review”, Sens. Actuat. B, Chem., 54, 3 (1999)CrossRefGoogle Scholar
  11. 19.
    K. Kimura, T. Matsuba, Y. Tsujimura, M, Yokoyama, “Unsymmetrical Calix[4]arene Ionophore Silicone-Rubber Composite Membranes for High Performance Sodium Ion Sensitive Field-Effect Transistors”, Anal. Chem., 64, 2508 (1992)CrossRefGoogle Scholar
  12. 20.
    K. Ariga, K. Isoyama, O. Hayashida, Y. Aoyama, Y. Okahata, “A QCM Study on Adsorption of Macrocyclic Sugar-Cluster to Variously-Functionalized Monolayers”, Chem. Lett., 1007 (1998)Google Scholar
  13. 21.
    K. Matsuura, K. Ariga, K. Endo, Y. Aoyama, Y. Okahata, “Dynamic Analyses on Induced-Fit Gaseous Guest Binding to Organic Crystals with a Quartz-Crystal Microbalance”, Chem. Eur. J., 6, 1750 (2000)CrossRefGoogle Scholar
  14. 22.
    Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami, K. Makino, “Hybridization of Nuceic Acids Immobilized on a Quartz Crystal Microbalance”, J. Am. Chem. Soc., 114, 8299 (1992)CrossRefGoogle Scholar
  15. 23.
    T. Sato, T. Serizawa, Y. Okahata, “Binding of Influenza A Virus to Monosialoganglioside (GM3) Reconstituted in Glucosylceramide and Sphingomyelin Membranes”, Biochim. Biophys. Acta, 1285, 14 (1996)CrossRefGoogle Scholar
  16. 24.
    C. K. O’Sullivan, G.G. Guilbault, “Commercial Quartz Crystal Microbalances — Theory and Applications”, Biosens. Bioelectron., 14, 663 (1999)CrossRefGoogle Scholar
  17. 25.
    L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, P.S. Weiss, “Are Single Molecular Wires Conducting?”, Science, 271, 1705 (1996)Google Scholar
  18. 26.
    M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, “Conductance of a Molecular Junction”, Science, 278, 252 (1997)CrossRefGoogle Scholar
  19. 27.
    C. Joachim, J.K. Gimzewski, A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices”, Nature, 408, 541 (2000)CrossRefGoogle Scholar
  20. 28.
    S. Weiss, “Fluorescence Spectroscopy of Single Biomolecules”, Science, 283, 1676 (1999)CrossRefGoogle Scholar
  21. 29.
    W.E. Moerner, M. Orrit, “Illuminating Single Molecules in Condensed Matter”, Science, 283, 1670 (1999)CrossRefGoogle Scholar
  22. 30.
    A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, “Single-Molecule Biomechanics with Optical Methods”, Science, 283, 1689 (1999)CrossRefGoogle Scholar
  23. 31.
    T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of Single Fluorescent Molecules and Individual ATP Turnovers by Single Myosin Molecules in Aqueous Solution”, Nature, 374, 555 (1995)CrossRefGoogle Scholar
  24. 32.
    H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, “Direct Observation of the Rotation of F1-ATPase”, Nature, 386, 299 (1997)CrossRefGoogle Scholar


  1. 33.
    R.F. Service, “Assembling Nanocircuits from the Bottom Up”, Science, 293, 782 (2001)CrossRefGoogle Scholar
  2. 34.
    C. Joachim, J.K. Gimzewski, A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices”, Nature, 408, 541 (2000)CrossRefGoogle Scholar
  3. 35.
    J.M. Tour, “Molecular Electronics. Synthesis and Testing of Components”, Acc. Chem. Res., 33, 791 (2000)CrossRefGoogle Scholar
  4. 36.
    R.L. Carroll, C.B. Gorman, “The Genesis of Molecular Electronics”, Angew. Chem. Int. Ed., 41, 4379 (2002)CrossRefGoogle Scholar
  5. 37.
    G.S. McCarty, P.S. Weiss, “Scanning Probe Studies of Single Nanostructures”, Chem. Rev., 99, 1983 (1999)CrossRefGoogle Scholar
  6. 38.
    D. Feldheim, “Flipping a Molecular Switch”, Nature, 408, 45 (2000)CrossRefGoogle Scholar
  7. 39.
    M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, “Conductance of a Molecular Junction”, Science, 278, 252 (1997)CrossRefGoogle Scholar
  8. 40.
    M.A. Reed, J.M. Tour, “Computing with Molecules”, Sci. Am., 282, 86 (2000)Google Scholar
  9. 41.
    G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, A. Vilan, “Molecular Engineering of Semiconductor Surfaces and Devices”, Acc. Chem. Res., 35, 121 (2002)CrossRefGoogle Scholar
  10. 42.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H. D. Abruña, P.L. McEuen, D.C. Ralph, “Coulomb Blockade and the Kondo Effect in Single-Atom Transistors”, Nature, 417, 722 (2002)CrossRefGoogle Scholar
  11. 43.
    Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price Jr., A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss, “Conductance Switching in Single Molecules through Conformation Changes”, Science, 292, 2306 (2001)CrossRefGoogle Scholar
  12. 44.
    A. Niemz, V.M. Rotello, “From Enzyme to Molecular Device. Exploring of Interdependence of Redox and Molecular Recognition”, Acc. Chem. Res., 32, 44 (1999)CrossRefGoogle Scholar
  13. 45.
    E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-Templated Assembly and Electrode Attachment of a Conductive Silver Wire”, Nature, 391, 775 (1998)CrossRefGoogle Scholar
  14. 46.
    S. Kugimiya, T. Lazark, M. Blanchard-Desce, J.M. Lehn, “Electron Conduction across Vesicular Bilayer Membranes Induced by a Carviologen Molecular Wire”, J. Chem. Soc., Chem. Commun., 1179 (1991)Google Scholar
  15. 47.
    A. Tsuda, A. Osuka, “Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared”, Science, 293, 79 (2001)CrossRefGoogle Scholar
  16. 48.
    T.M. Swager, “The Molecular Wire Approach to Sensory Signal Amplification”, Acc. Chem. Res., 31, 201 (1998)CrossRefGoogle Scholar
  17. 49.
    D.T. McQuade, A.E. Pullen, T.M. Swager, “Conjugated Polymer-Based Chemical Sensors”, Chem. Rev., 100, 2537 (2000)CrossRefGoogle Scholar
  18. 50.
    A.G. MacDiarmid, “Synthetic Metals: A Novel Role for Organic Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2581 (2001)CrossRefGoogle Scholar
  19. 51.
    H. Shirakawa, “The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2575 (2001)CrossRefGoogle Scholar
  20. 52.
    A.J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2591 (2001)CrossRefGoogle Scholar
  21. 53.
    H. Sirringhaus, N. Tessler, R.H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, 280, 1741 (1998)CrossRefGoogle Scholar
  22. 54.
    S.L. Gilat, S.H. Kawai, J.M. Lehn, “Light-Triggered Electrical and Optical Switching Devices”, J. Chem. Soc., Chem. Commun., 1439 (1993)Google Scholar
  23. 55.
    P.G. Haydon, “Glia: Listening and Talking to the Synapse”, Nature Rev. Neurosci., 2, 185 (2001)CrossRefGoogle Scholar
  24. 56.
    J.L. Sessler, B. Wang, A. Harriman, “Long-Range Photoinduced Electron Transfer in an Associated But Noncovalently Linked Photosynthetic Model System”, J. Am. Chem. Soc., 115, 10418 (1993)CrossRefGoogle Scholar
  25. 57.
    A. Harriman, Y. Kubo, J.L. Sessler, “Molecular Recognition via Base-Pairing — Photo induced Electron-Transfer in Hydrogen-Bonded Zinc Porphyrin Benzoquinone Conjugates”, J. Am. Chem. Soc., 114, 388 (1992)CrossRefGoogle Scholar
  26. 58.
    K. Ogawa, Y. Kobuke, “Formation of a Giant Supramolecular Porphyrin Array by Self-Coordination”, Angew. Chem. Int. Ed., 39, 4070 (2000)CrossRefGoogle Scholar
  27. 59.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, “Individual Single-Wall Carbon Nanotubes as Quantum Wires”, Nature, 386, 474 (1997)CrossRefGoogle Scholar
  28. 60.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube”, Nature, 393, 49 (1998)CrossRefGoogle Scholar
  29. 61.
    T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Lei, C.S. Jayanthi, M. Tang, S.-Y. Wu, “Reversible Electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation”, Nature, 405, 769 (2000)CrossRefGoogle Scholar
  30. 62.
    P. Avouris, “Molecular Electronics with Carbon Nanotubes”, Acc. Chem. Res., 35, 1026 (2002)CrossRefGoogle Scholar
  31. 63.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”, Science, 289, 94 (2000)CrossRefGoogle Scholar
  32. 64.
    Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, “Two-Dimensional Molecular Electronics Circuits”, Chem. Phys. Chem., 3, 519 (2002)Google Scholar
  33. 65.
    S.J. Tans, C. Dekker, “Potential Modulations along Carbon Nanotubes”, Nature, 404, 834 (2000)CrossRefGoogle Scholar
  34. 66.
    M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, “Single-Electron Transport in Ropes of Carbon Nanotubes”, Science, 275, 1922 (1997)CrossRefGoogle Scholar
  35. 67.
    Y. Okawa, M. Aono, “Nanoscale Control of Chain Polymerization”, Nature, 409, 683 (2001)CrossRefGoogle Scholar
  36. 68.
    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits”, Science, 290, 2123 (2000)CrossRefGoogle Scholar


  1. 69.
    D. Holten, D.F. Bocian, J.S. Lindsey, “Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices”, Acc. Chem. Res., 35, 57 (2002)CrossRefGoogle Scholar
  2. 70.
    A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, “Signaling Recognition Events with Fluorescent Sensors and Switches”, Chem. Rev., 97, 1515 (1997)CrossRefGoogle Scholar
  3. 71.
    S.R. Marder, B. Kippelen, A.K.Y. Jen, N. Peyghambarian, “Design and Synthesis of Chromophores and Polymers for Electro-Optic and Photorefractive Applications”, Nature, 388, 845 (1997)CrossRefGoogle Scholar
  4. 72.
    F. Hide, M.A. DiazGarcia, B.J. Schwartz, A.J. Heeger, “New Developments in the Photonic Applications of Conjugated Polymers”, Acc. Chem. Res., 30, 430 (1997)CrossRefGoogle Scholar
  5. 73.
    K. Kalyanasundaram, M. Grätzel, “Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices”, Coordinat. Chem. Rev., 177, 347 (1998)CrossRefGoogle Scholar
  6. 74.
    U. Mitschke, P. Bauerle, “The Electroluminescence of Organic Materials”, J. Mater. Chem., 10, 1471 (2000)CrossRefGoogle Scholar
  7. 75.
    J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, T. Watanabe, “Redox-Responsive Molecular Switch for Intramolecular Energy Transfer”, J. Am. Chem. Soc., 119, 7895 (1997)CrossRefGoogle Scholar
  8. 76.
    A.P. de Silva, H.Q.N. Gunaratne, C.P. Mccoy, “A Molecular Photonic AND Gate Based on Fluorescent Signaling”, Nature, 364, 42 (1993)CrossRefGoogle Scholar
  9. 77.
    T. Gunnlaugsson, D. A. M. Dónaill, D. Parker, “Lanthanide Macrocyclic Quinolyl Conjugates as Luminescent Molecular-Level Devices”, J. Am. Chem. Soc., 123, 12866 (2001)CrossRefGoogle Scholar
  10. 78.
    E. Murguly, T.B. Norsten, N.R. Branda, “Nondestructive Data Processing Based on Chiroptical 1,2-Diethienylethene Photochromes”, Angew. Chem. Int. Ed., 40, 1752 (2001)CrossRefGoogle Scholar
  11. 79.
    P.K.H. Ho, D.S. Thomas, R.H. Friend, N. Tessler, “All-Polymer Optoelectronic Devices”, Science, 285, 233 (1999)CrossRefGoogle Scholar
  12. 80.
    P.K.H. Ho, J.-S. Kim, J.H. Burroughes, H. Becker, S.F.Y. Li, T.M. Brown, F. Cacialli, R.H. Friend, “Molecular-Scale Interface Engineering for Polymer Light-Emitting Diodes”, Nature, 404, 481 (2000)CrossRefGoogle Scholar
  13. 81.
    D.M. Kaschak, J.T. Lean, C.C. Waraksa, G.B. Saupe, H. Usami, T.E. Mallouk, “Photoinduced Energy and Electron Transfer Reactions in Lamellar Polyanion/Polycation Thin Films: Toward an Inorganic Leaf”, J. Am. Chem. Soc., 121, 3435 (1999)CrossRefGoogle Scholar


  1. 82.
    A.P. de Silva, N.D. McClenaghan, “Proof-of-Principle of Molecular-Scale Arithmetic”, J. Am. Chem. Soc., 122, 3965 (2000)CrossRefGoogle Scholar
  2. 83.
    A. Credi, V. Balzani, S.J. Langford, J.F. Stoddart, “Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine”, J. Am. Chem. Soc., 119, 2679 (1997)CrossRefGoogle Scholar
  3. 84.
    J.C. Ellenbogen, J.C. Love, “Architectures for Molecular Electronic Computers: 1. Logic Structures and an Adder Designed fromMolecular Electronic Diodes”, Proc. IEEE, 88, 386 (2000)CrossRefGoogle Scholar
  4. 85.
    C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, “Electronically Configurable, Molecular-Based Logic Gates”, Science, 285, 391 (1999)CrossRefGoogle Scholar
  5. 86.
    M. Cavallini, F. Biscarini, S. León, F. Zerbetto, G. Bottari, D.A. Leigh, “Information Storage Using Supramolecular Surface Patterns”, Science, 299, 531 (2003)CrossRefGoogle Scholar
  6. 87.
    C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.P. Heath, “A [2]Catenane-Based Solid State Electronically Reconfigurable Switch”, Science, 289, 1172 (2000)CrossRefGoogle Scholar
  7. 88.
    L.M. Adleman, “Molecular Computing of Solutions to Combinatorial Problems”, Science, 266, 1021 (1994)Google Scholar
  8. 89.
    L.M. Adleman, “Computing with DNA”, Sci. Am., 279, 54 (1998)Google Scholar
  9. 90.
    G. Paum, “Computing with Membranes”, J. Comput. Sys. Sci., 61, 108 (2000)CrossRefGoogle Scholar
  10. 91.
    Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, L.M. Smith, “DNA Computing on Surfaces”, Nature, 403, 175 (2000)CrossRefGoogle Scholar
  11. 92.
    R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, L. Adleman, “Solution of a 20-Variable 3-SAT Problem on a DNA Computer”, Science, 296, 499 (2002)CrossRefGoogle Scholar
  12. 93.
    D. Faulhammer, A.R. Cukras, R.J. Lipton, L.F. Landweber, “Molecular Computation: RNA Solutions to Chess Problems”, Proc. Natl. Acad. Sci. USA, 97, 1385 (2000)CrossRefGoogle Scholar
  13. 94.
    A. Saghatelian, N.H. Völcher, K.M. Guckian, V. S.-Y. Lin, M.R. Ghadiri, “DNA-Based Photonic Logic Gates: AND, NAND, and INHIBIT”, J. Am. Chem. Soc., 125, 346 (2003)CrossRefGoogle Scholar
  14. 95.
    Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, E. Shapiro, “DNA Molecule Provides a ComputingMachine with Both Data and Fuel”, Proc. Natl. Acad. Sci. USA, 100, 2191 (2003)CrossRefGoogle Scholar
  15. 96.
    K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M. Hagiya, “Molecular Computation by DNA Hairpin Formation”, Science, 288, 1223 (2000)CrossRefGoogle Scholar


  1. 97.
    R. Ballardini, V. Balzani, M.T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H.G. Ricketts, J.F. Stoddart, “A Photochemically Driven Molecular Machine”, Angew. Chem. Int. Ed., 32, 1301 (1993)CrossRefGoogle Scholar
  2. 98.
    P.R. Ashton, R. Ballardini, V. Balzani, S.E. Boyd, A. Credi, M.T. Gandolfi, M. Gomez Lopez, S. Iqbal, D. Philp, J.A. Preece, L. Prodi, H.G. Ricketts, J.F. Stoddart, M.S. Tolley, M. Venturi, A.J.P. White, D.J. Williams, “Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes”, Chem. Eur. J., 3, 152 (1997)Google Scholar
  3. 99.
    V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, “Artificial Molecular Machines”, Angew. Chem. Int. Ed., 39, 3348 (2000)CrossRefGoogle Scholar
  4. 100.
    V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, “Molecular Machines Based on Metal Ion Translocation”, Acc. Chem. Res., 34, 488 (2001)CrossRefGoogle Scholar
  5. 101.
    C.A. Shalley, “Of Molecular Gyroscopes, Matroshka Dolls, and Other “Nano”-Toys”, Angew. Chem. Int. Ed., 41 1513 (2002)CrossRefGoogle Scholar
  6. 102.
    M. Barboiu, J.-M. Lehn, “Dynamic Chemical Devices: Modulation of Contraction/ Extension Molecular Motion by Coupled-Ion Binding/pH Change-Induced Structural Switching”, Proc. Natl. Acad. Sci. USA, 99, 5201 (2002)CrossRefGoogle Scholar
  7. 102.
    J.K. Gimzewski, C. Joachim, R.R. Schlittler, V. Langlais, H. Tang, I. Johannsen, “Rotation of a Single MoleculeWithin a Supramolecular Bearing”, Science, 281, 531 (1998)CrossRefGoogle Scholar
  8. 104.
    J.K. Gimzewski, C. Joachim, “Nanoscale Science of Single Molecules Using Local Probes”, Science, 283, 1684 (1999)CrossRefGoogle Scholar
  9. 105.
    B.L. Feringa, “In Control of Motion: From Molecular Switches to Molecular Motors”, Acc. Chem. Res., 34, 504 (2001)CrossRefGoogle Scholar
  10. 106.
    N. Koumura, E.M. Geertsema, M.B. van Gelder, A. Meetsma, B.L. Feringa, “Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification”, J. Am. Chem. Soc., 124, 5037 (2002)CrossRefGoogle Scholar
  11. 107.
    R.A. vanDelden, N. Koumura, N. Harada, B.L. Feringa, “Unidirectional RotaryMotion in a Liquid Crystalline Environment: Color Tuning by aMolecularMotor”, Proc. Natl. Acad. Sci. USA, 99, 3945 (2002)Google Scholar
  12. 108.
    N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, “Light-Driven Monodirectional Molecular Rotor”, Nature, 401, 152 (1999)CrossRefGoogle Scholar
  13. 109.
    T.R. Kelly, H. de Silva, R.A. Silva, “Unidirectional Rotary Motion in a Molecular System”, Nature, 401, 150 (1999)CrossRefGoogle Scholar
  14. 110.
    T.R. Kelly, “Progress toward a Rationally Designed Molecular Motor”, Acc. Chem. Res., 34, 514 (2001)CrossRefGoogle Scholar
  15. 111.
    C.A. Schalley, K. Beizai, F. Vögtle, “On theWay to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality”, Acc. Chem. Res., 34, 465 (2001)CrossRefGoogle Scholar
  16. 112.
    V. Balzani, M. Gómez-López, J.F. Stoddart, “Molecular Machines”, Acc. Chem. Res., 31, 405. (1998)Google Scholar
  17. 112.
    A. Harada, “Cyclodextrin-Based Molecular Machines”, Acc. Chem. Res., 34, 456 (2001)CrossRefGoogle Scholar
  18. 114.
    K. Kinbara, T. Aida, “Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies”, Chem. Rev., 105, 1377 (2005)CrossRefGoogle Scholar
  19. 115.
    H. Shigekawa, K. Miyake, J. Sumaoka, A. Harada, M. Komiyama, “The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace”, J. Am. Chem. Soc., 122, 5411 (2000)CrossRefGoogle Scholar
  20. 116.
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, “Carbon Nanotube Actuators”, Science, 284, 1340 (1999)CrossRefGoogle Scholar
  21. 117.
    P. Kim, C.M. Lieber, “Nanotube Nanotweezers”, Science, 286, 2148 (1999)CrossRefGoogle Scholar
  22. 118.
    O. Inganäs, I. Lundstrüm, “Carbon Nanotube Muscles”, Science, 284, 1281 (1999)CrossRefGoogle Scholar
  23. 119.
    J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, J.K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics”, Science, 288, 316 (2000)CrossRefGoogle Scholar
  24. 120.
    C.M. Niemeyer, M. Adler, “Nanomechanical Devices Based on DNA”, Angew. Chem. Int. Ed., 41, 3779 (2002)CrossRefGoogle Scholar
  25. 121.
    C. Mao, W. Sun, Z. Shen, N.C. Seeman, “A Nanomechanical Device Based on the B-Z Transition of DNA”, Nature, 397, 144 (1999)CrossRefGoogle Scholar
  26. 122.
    K. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, J. Kikuchi, “Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air-Water Interface”, J. Am. Chem. Soc., 122, 7835 (2000)CrossRefGoogle Scholar
  27. 122.
    K. Ariga, T. Nakanishi, H. Tsuji, D. Sakai, J. Kikuchi, “Piezoluminescence as the Air-Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application”, Langmuir, 21, 976 (2005)CrossRefGoogle Scholar


  1. 124.
    H. Kuhn, “Electron-Transfer in Monolayer Assemblies”, Pure Appl. Chem., 51, 341 (1979)Google Scholar
  2. 125.
    P.S. Vincett, G.G. Roberts, “Electrical and Photo-Electrical Transport Properties of Langmuir-Blodgett Films and a Discussion of Possible Device Application”, Thin Solid Films, 68, 135 (1980)CrossRefGoogle Scholar
  3. 126.
    T. Ito, I. Yamazaki, N. Ohta, “External Electric Field Effect on Interlayer Vectorial Electron Transfer from Photoexcited Oxacarbocyanine to Viologen in Langmuir-Blodgett Films”, Chem. Phys. Lett., 277, 125 (1997)CrossRefGoogle Scholar
  4. 127.
    K. Naito, A. Miura, “Photogenerated Charge Storage in Hetero-Langmuir-Blodgett Films”, J. Am. Chem. Soc., 115, 5185 (1993)CrossRefGoogle Scholar
  5. 128.
    T. Cassagneau, T.E. Mallouk, J.H. Fendler, “Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles”, J. Am. Chem. Soc., 120, 7848 (1998)CrossRefGoogle Scholar
  6. 129.
    A. Wu, D. Yoo, J.K. Lee, M.F. Rubner, “Solid-State Light-Emitting Devices Based on the Tris-ChelatedRuthenium(II) Complex: 3.High EfficiencyDevices via a Layer-by-Layer Molecular-Level Blending Approach”, J. Am. Chem. Soc., 121, 4883 (1999)CrossRefGoogle Scholar
  7. 130.
    M. Fujihira, K. Nishiyama, H. Yamada, “Photoelectrochemical Responses of Optically Transparent Electrodes Modified with Langmuir-Blodgett Films Consisting of Surfactant Derivatives of Electron-Donor, Acceptor and SensitizerMolecules”, Thin Solid Films, 132, 77 (1985)CrossRefGoogle Scholar
  8. 131.
    M. Fujihira, M. Sakomura, “Photoinduced Intramolecular Electron-Transfer Across Monolayers Consisting of Linear A-S-D Triad Amphiphilic Molecules”, Thin Solid Films, 179, 471 (1989)CrossRefGoogle Scholar
  9. 132.
    M. Fujihira, H. Yamada, “Molecular Photodiodes Consisting of Unidirectionally Oriented Amphipathic Acceptor Sensitized Donor Triads”, Thin Solid Films, 160, 125 (1988)CrossRefGoogle Scholar
  10. 132.
    H. Tachibana, T. Nakamura, M. Matsumoto, H, Komizu, E. Manda, H. Mino, A. Yase, Y. Kawabata, “Photochemical Switching in Conductive Langmuir-Blodgett Films”, J. Am. Chem. Soc., 111, 3080 (1989)CrossRefGoogle Scholar
  11. 134.
    I. Yamazaki, N. Ohta, “Photochemistry in LB Films and Its Application to Molecular Switching Devices”, Pure Appl. Chem., 67, 209 (1995)Google Scholar
  12. 135.
    I. Yamazaki, S. Okazaki, T. Minami, N. Ohta, “Optically Switching Parallel Processors by Means of Langmuir-Blodgett Multilayer Films”, Appl. Opt., 33, 7561 (1994)CrossRefGoogle Scholar
  13. 136.
    W.B. Lin, S. Yitzchaik, W.P. Lin, A. Malik, M.K. Durbin, A.G. Richter, G.K. Wong, P. Dutta, T.J. Marks, “New Nonlinear-Optical Materials — Expedient Topotactic Self-Assembly of Acentric Chromophoric Superlattices”, Angew. Chem. Int. Ed., 34, 1497 (1995)CrossRefGoogle Scholar
  14. 137.
    L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, M. Ziari, H. Fetterman, Y. Shi, R.V. Mustacich, A.K.Y. Jen, K.J. Shea, “Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Application in Photonics”, Chem. Mater., 7, 1060 (1995)CrossRefGoogle Scholar


  1. 138.
    R. Dagami, “NASA Goes NANO”, Chem. Eng. News, Feb 28th, 36 (2000)Google Scholar
  2. 139.
    R. Dagami, “NanoSpace 2000: Melding Two Worlds”, Chem. Eng. News, Feb 28th, 39 (2000)Google Scholar
  3. 140.
    G. Musser, “The Spirit of Exploration”, Sci. Am., 290, 52 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations