Molecular Self-Assembly — How to Build the Large Supermolecules


Lipid Bilayer Solid Support Barbituric Acid Cyanuric Acid Supramolecular Assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.M. Whiresides, J.P. Mathias, C.T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures”, Science, 254, 1312 (1991)Google Scholar
  2. 2.
    I.W. Hamley, “Nanotechnology with Soft Materials”, Angew. Chem. Int. Ed., 42, 1692 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Philp, J.F. Stoddart, “Self-Assembly in Natural and Unnatural Systems”, Angew. Chem. Int. Ed., 35, 1155 (1996)Google Scholar
  4. 4.
    J.H. Fendler, “Self-Assembled Nanostructured Materials”, Chem. Mater., 8, 1616 (1996)CrossRefGoogle Scholar
  5. 5.
    J.M. Lehn, “Perspectives in Supramolecular Chemistry — From Molecular Recognition towards Molecular Information Processing and Self-Organization”, Angew. Chem. Int. Ed., 29, 1304 (1990)CrossRefGoogle Scholar
  6. 6.
    T. Kunitake, “Synthetic Bilayer Membranes — Molecular Design, Self-Organization and Applications”, Angew. Chem. Int. Ed., 31, 709 (1992)CrossRefGoogle Scholar
  7. 7.
    M. Fujita, “Metal-Directed Self-Assembly of Two-and Three-Dimensional Synthetic Receptors”, Chem. Soc. Rev., 27, 417 (1998)CrossRefGoogle Scholar
  8. 8.
    F.W. Zeng, S.C. Zimmerman, “Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly”, Chem. Rev., 97, 1681 (1997)CrossRefGoogle Scholar


  1. 9.
    J.-M. Lehn, “Toward Self-Organization and Complex Matter”, Science, 295, 2400 (2002)CrossRefGoogle Scholar
  2. 10.
    B. Hasenknopf, J.-M. Lehn, G. Baum, D. Fenske, “Self-Assembly of a Heteroduplex Helicate from Two Different Ligand Strands Cu(II) Cations”, Proc. Natl. Acad. Sci. USA, 93, 1397 (1996)CrossRefGoogle Scholar
  3. 11.
    R. Krämer, J.-M. Lehn, A. Marquis-Rigault, “Self-Recognition in Helicate Self-Assembly: Spontaneous Formation of Helical Metal Complexes from Mixtures of Ligands and Metal Ions”, Proc. Natl. Acad. Sci. USA, 90, 5394 (1993)CrossRefGoogle Scholar
  4. 12.
    B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupoint-Gervais, A. van Dorsselaer, B. Kneisel, D. Fenske, “Self-Assembly of Tetra-and Hexanuclear Circular Helicates”, J. Am. Chem. Soc., 119, 10956 (1997)CrossRefGoogle Scholar
  5. 13.
    C.J. Matthews, S.T. Onions, G. Morata, L.J. Davis, S.L. Health, D.J. Price, “A Self-Assembled Tetracopper Triple-Stranded Helicate: Towards the Controlled Synthesis of Finite One-Dimensional Magnetic Chains”, Angew. Chem. Int. Ed., 42, 3166 (2003)CrossRefGoogle Scholar
  6. 14.
    A. Marquis, J.-P. Kintzinger, R. Graff, P.N.W. Baxter, J.-M. Lehn, “Mechanistic Features, Cooperativity, and Robustness in the Self-Assembly of Multicomponent Silver(I)Grid-Type Metalloarchitectures”, Angew. Chem. Int. Ed., 41, 2760 (2002)CrossRefGoogle Scholar
  7. 15.
    B. Linton, A.D. Hamilton, “Formation of Artificial Receptors by Metal-Templated Self-Assembly”, Chem. Rev., 97, 1669 (1997)CrossRefGoogle Scholar
  8. 16.
    I. Weissbuch, P.N.W. Baxter, S. Cohen, H. Cohen, K. Kjaer, P.B. Howes, J. Als-Nielsen, G.S. Hanan, U.S. Schubert, J.-M. Lehn, L. Leiserowitz, M. Lahav, “Self-Assembly at the Air-Water Interface. In-Situ Preparation of Thin Films of Metal Ion Grid Architectures”, J. Am. Chem. Soc., 120, 4850 (1998)CrossRefGoogle Scholar
  9. 17.
    C. Piguet, G. Bernardinelli, G. Hopfgartner, “Helicates as Versatile Supramolecular Complexes”, Chem. Rev., 97, 2005 (1997)CrossRefGoogle Scholar
  10. 18.
    P.N.W. Baxter, J.M. Lehn, J. Fischer, M.T. Youinou, “Self-Assembly and Structure of a 3X3 Inorganic Grid from 9 Silver Ions and 6 Ligand Components”, Angew. Chem. Int. Ed., 33, 2284 (1994)CrossRefGoogle Scholar
  11. 19.
    P.F.H. Schwab, M.D. Levin, J. Michl, “Molecular Rods. 1. Simple Axial Rods”, Chem. Rev., 99, 1863 (1999)CrossRefGoogle Scholar
  12. 20.
    J. Michl, T. Magnera, “Two-Dimensional Supramolecular Chemistry with Molecular Tinkertoys”, Proc. Natl. Acad. Sci. USA, 99, 4788 (2002)CrossRefGoogle Scholar
  13. 21.
    V. Berl, I. Huc, R.G. Khoury, M.J. Krische, J.-M. Lehn, “Interconversion of Single and Double Helices Formed from Synthetic Molecular Strands”, Nature, 407, 720 (2000)CrossRefGoogle Scholar
  14. 22.
    V. Berl, I. Huc, R.G. Khoury, J.-M. Lehn, “Helical Molecular Programming: Folding of Oligopyridine-Dicarboxamides into Molecular Single Helices”, Chem. Eur. J., 7, 2798 (2001)CrossRefGoogle Scholar
  15. 23.
    J.P. Mathias, E.E. Simaney, J.A. Zerkowski, C.T. Seto, G.M. Whitesides, “Structural Preferences of Hydrogen-Bonded Networks in Organic Solution — The Cyclic CA3M3 Rosette”, J. Am. Chem. Soc., 116, 4316 (1994)CrossRefGoogle Scholar
  16. 24.
    J.P. Mathias, E.E. Simanek, G.M. Whitesides, “Self-Assembly Through Hydrogen Bonding: Peripheral Crowding — A New Strategy for the Preparation of Stable Supramolecular Aggregates Based on Parallel, Connected CA3M3 Rosettes”, J. Am. Chem. Soc., 116, 4326 (1994)CrossRefGoogle Scholar
  17. 25.
    G.M. Whitesides, E.E. Simanek, J.P. Mathias, C.T. Seto, D.N. Chin, M. Mammen, D.M. Gordon, “Noncovalent Synthesis — Using Physical-Organic Chemistry to Make Aggregates”, Acc. Chem. Res., 28, 37 (1995)CrossRefGoogle Scholar
  18. 26.
    J.A. Zerkowski, C.T. Seto, G.M. Whitesides, “Solid State Structure of Rosette and Crinkled Tape Motifs Derived from the Cyanuric Acid and Melamine Lattice”, J. Am. Chem. Soc., 114, 5473 (1992)CrossRefGoogle Scholar
  19. 27.
    N. Kimizuka, S. Fujikawa, H. Kuwahara, T. Kunitake, A. Marsh, J.M. Lehn, “Mesoscopic Supramolecular Assembly of a Janus Molecule and a Melamine Derivative via Complementary Hydrogen-Bonds”, J. Chem. Soc., Chem. Commun., 2103 (1995)Google Scholar
  20. 28.
    J.M. Lehn, M. Mascal, A. DeCian, J. Fischer, “Molecular Ribbons from Molecular Recognition Directed Self-Assembly of Self-Complimentary Molecular Components”, J. Chem. Soc. Perkin Trans., 2, 461 (1992)Google Scholar
  21. 29.
    R. Ahuja, P.L. Caruso, D. Möbius, W. Paulus, H. Ringsdorf, G.G. Wildburg, “Formation of Molecular Strands by Hydrogen-Bonds at the Gas-Water Interface — Molecular Recognition and Quantitative Hydrolysis of Barbituric Acid Lipids”, Angew. Chem. Int. Ed., 32, 1033 (1993)CrossRefGoogle Scholar
  22. 30.
    M.M. Conn, J. Rebek, Jr., “Self-Assembling Capsules”, Chem. Rev., 97, 1647 (1997)CrossRefGoogle Scholar
  23. 31.
    H. Schönherr, V. Paraschiv, S. Zapotoczny, M. Crego-Calama, P. Timmerman, C.W. Frank, G.J. Vancso, D.N. Reinhouldt, “Unraveling the Nanostructure of Supramolecular Assemblies of Hydrogen-Bonded Rosettes on Graphite: An Atomic Force Microscopy Study”, Proc. Natl. Acad. Sci., USA, 99, 5024 (2002)CrossRefGoogle Scholar
  24. 32.
    L. Brunsveld, B.J.B. Folmer, E.W. Meijer, P.R. Sijbesma, “Supramolecular Polymers”, Chem. Rev., 101, 4071 (2001)CrossRefGoogle Scholar
  25. 33.
    J.H.K.K. Hirschuberg, L. Brunsveld, A. Ramzi, J.A.J.M. Vekemans, R.P. Sijbesma, E.W. Meijer, “Helical Self-Assembled Polymers from Cooperative Stacking of Hydrogen-Bonded Pairs”, Nature, 407, 167 (2000)CrossRefGoogle Scholar
  26. 34.
    T. Gulik-Krzywicki, C. Fouquey, J.-M. Lehn, “Electron Microscopic Study of Supramolecular Liquid Crystalline Polymers Formed by Molecular-Recognition-Directed Self-Assembly from Complementary Chiral Components”, Proc. Natl. Acad. Sci. USA, 90, 163 (1993)CrossRefGoogle Scholar
  27. 35.
    K. Tanaka, A. Tengeiji, T. Kato, N. Toyama, M. Shionoya, “A Discrete Self-Assembled Metal Array in Artificial DNA”, Science, 299, 1212 (2003)CrossRefGoogle Scholar


  1. 36.
    F. Toda, “Solid State Organic Chemistry: Efficient Reactions, Remarkable Yields, and Stereoselectivity”, Acc. Chem. Res., 28, 480 (1995)CrossRefGoogle Scholar
  2. 37.
    F. Toda, “Isolation and Optical Resolution of Materials Utilizing Inclusion Crystallization”, Topics Curr. Chem., 140, 43 (1987)CrossRefGoogle Scholar
  3. 38.
    K. Miki, A. Masui, N. Kasai, M. Miyata, M. Shibakami, K. Takemoto, “New Channel-Type Inclusion Compound of Steroidal Bile Acid Structure of a 1:1 Complex between Cholic Acid and Acetophenone”, J. Am. Chem. Soc., 110, 6594 (1988)CrossRefGoogle Scholar
  4. 39.
    B. Moulton, M.J. Zaworotko, “From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids”, Chem. Rev., 101, 1629 (2001)CrossRefGoogle Scholar
  5. 40.
    O.M. Yaghi, H.L. Li, C. Davis, D. Richardson, T.L. Groy, “Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids”, Acc. Chem. Res., 31, 474 (1998)CrossRefGoogle Scholar
  6. 41.
    K. Sada, M. Sugahara, K. Kato, M. Miyata, “Controlled Expansion of a Molecular Cavity in a Steroidal Host Compound”, J. Am. Chem. Soc., 123, 4386 (2001)CrossRefGoogle Scholar
  7. 42.
    A. Matsumoto, T. Odani, K. Sada, M. Miyata, K. Tashiro, “Intercalation of Alkylamines into an Organic Polymer Crystal”, Nature, 405, 328 (2000)CrossRefGoogle Scholar
  8. 43.
    K. Endo, T. Sawaki, M. Koyanagi, K. Kobayashi, H. Masuda, Y. Aoyama, “Guest-Binding Properties of Organic Crystals Having an Extensive Hydrogen-Bonded Network — An Orthogonal Anthracene-Bis(Resorcinol) Derivative as a Functional Organic Analog of Zeolites”, J. Am. Chem. Soc., 117, 8341 (1995)CrossRefGoogle Scholar
  9. 44.
    T. Dewa, K. Endo, Y. Aoyama, “Dynamic Aspect of Lattice Inclusion Complexation Involving a Phase Change. Equilibrium, Kinetics, and Energetics of Guest-Binding to a Hydrogen-Bonded Flexible Organic Network”, J. Am. Chem. Soc., 120, 8933 (1998)CrossRefGoogle Scholar
  10. 45.
    K. Endo, T. Koike, T. Sawaki, O. Hayashida, H. Masuda, Y. Aoyama, “Catalysis by Organic Solids. Stereoselective Diels-Alder Reactions Promoted by Microporous Molecular Crystals Having an Extensive Hydrogen-Bonded Network”, J. Am. Chem. Soc., 119, 4117 (1997)CrossRefGoogle Scholar
  11. 46.
    K. Matsuura, K. Ariga, K. Endo, Y. Aoyama, Y. Okahata, “Dynamic Analyses on Induced-fit Gaseous Guest Binding to Organic Crystals with a Quartz-Crystal Microbalance”, Chem. Eur. J., 6, 1750 (2000)CrossRefGoogle Scholar
  12. 47.
    K. Ariga, K. Endo, Y. Aoyama, Y. Okahata, “QCM Analyses on Adsorption of Gaseous Guests to Cast Films of Porphyrin-Resorcinol Derivatives”, Colloid Surf. A, 169, 177 (2000)CrossRefGoogle Scholar
  13. 48.
    R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.-C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, “Formation of One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid”, Science, 298, 2358 (2002)CrossRefGoogle Scholar


  1. 49.
    G.M. Whitesides, B. Grzybowski, “Self-Assembly at All Scales”, Science, 295, 2418 (2002)CrossRefGoogle Scholar
  2. 50.
    N.B. Bowden, M. Weck, I.S. Choi, G.M. Whitesides, “Molecular-Mimetic Chemistry and Mesoscale Self-Assembly”, Acc. Chem. Res., 34, 231 (2001)CrossRefGoogle Scholar
  3. 51.
    G.M. Whitesides, M. Boncheva, “Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components”, Proc. Natl. Acad. Sci. USA, 99, 4769 (2002)CrossRefGoogle Scholar
  4. 52.
    T.L. Breen, J. Tien, S.R.J. Oliver, T. Hadzic, G.M. Whitesides, “Designand Self-Assembly of Open, Regular, 3D Mesostructures”, Science, 284, 948 (1999)CrossRefGoogle Scholar
  5. 53.
    D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, G.M. Whitesides, “Forming Electrical Networks in Three Dimensions by Self-Assembly”, Science, 289, 1170 (2000)CrossRefGoogle Scholar
  6. 54.
    M. Weck, I.S. Choi, N.L. Jeon, G.M. Whitesides, “Assembly of Mesoscopic Analogues of Nucleic Acids”, J. Am. Chem. Soc., 122, 3546 (2000)CrossRefGoogle Scholar
  7. 55.
    N. Bowden, I.S. Choi, B.A. Grzybowski, G.M. Whitesides, “Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the Capillary Bond”, J. Am. Chem. Soc., 121, 5373 (1999)CrossRefGoogle Scholar


  1. 56.
    T. Yanagida, A.H. Iwane, “A Large Step for Myosin”, Proc. Natl. Acad. Sci. USA, 97, 9357 (2000)CrossRefGoogle Scholar
  2. 57.
    D.S. Goodsell, “Biomolecules and Nanotechnology”, Am. Sci., 88, 230 (2000)CrossRefGoogle Scholar
  3. 58.
    D.R. Liu, P.G. Schultz, “Generating New Molecular Function: A Lesson from Nature”, Angew. Chem. Int. Ed., 38, 36 (1999)CrossRefGoogle Scholar


  1. 59.
    S.J. Singer, G.L. Nicolson, “Fluid Mosaic Model of Structure of Cell Membranes”, Science, 175, 720 (1972)Google Scholar
  2. 60.
    T.L. Steck, “Organization of Proteins in Human Red Blood Cell Membrane — Review”, J. Cell Biol., 62, 1 (1974)CrossRefGoogle Scholar
  3. 61.
    G. Vereb, J. Szollosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T.A. Waldmann, S. Damjanovich, “Dynamic, Yet Structured: The Cell Membrane Three Decades After the Singer-Nicolson Model”, Proc. Natl. Acad. Sci. USA, 100, 8053 (2003)CrossRefGoogle Scholar


  1. 62.
    C.M.L. Carvalho, J.M.S. Cabral, “Reverse Micelles as Reaction Media for Lipases”, Biochimie, 82, 1063 (2000)CrossRefGoogle Scholar
  2. 63.
    K. Kataoka, A. Harada, Y. Nagasaki, “Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance”, Adv. Drug Deliv. Rev., 47, 113 (2001)CrossRefGoogle Scholar
  3. 64.
    T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, “The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials”, Bull. Chem. Soc. Jpn., 63, 988 (1990)CrossRefGoogle Scholar
  4. 65.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, “Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism”, Nature, 359, 710 (1992)CrossRefGoogle Scholar
  5. 66.
    M.E. Davis, “Ordered Porous Materials for Emerging Applications”, Nature, 417, 813 (2002)CrossRefGoogle Scholar
  6. 67.
    J.Y. Ying, C.P. Mehnert, M.S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials”, Angew. Chem. Int. Ed., 38, 56 (1999)CrossRefGoogle Scholar
  7. 68.
    C.L. Bowes, G.A. Ozin, “Self-Assembling Frameworks: Beyond Microporous Oxides”, Adv. Mater., 8, 13 (1996)CrossRefGoogle Scholar
  8. 69.
    S. Mann, S.L. Burkett, S.A. Davis, C.E. Fowler, N.H. Mendelson, S.D. Sims, D. Walsh, N.T. Whilton, “Sol-Gel Synthesis of Organized Matter”, Chem. Mater., 9, 2300 (1997)CrossRefGoogle Scholar
  9. 70.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores”, Science, 279, 548 (1998)CrossRefGoogle Scholar
  10. 71.
    Q. Zhang, K. Ariga, A. Okabe, T. Aida, “A Condensable Amphiphile with a Cleavable Tail As a “Lizard” Template for the Sol-Gel Synthesis of Functionalized Mesoporous Silica”, J. Am. Chem. Soc., 126, 988 (2004)CrossRefGoogle Scholar


  1. 72.
    W. Curatolo, “Glycolipid Function”, Biochim. Biophys. Acta, 906, 137 (1987)Google Scholar
  2. 73.
    J.W. Szostak, D.P. Bartel, P.L. Luisi, “Synthesizing Life”, Nature, 409, 387 (2001)CrossRefGoogle Scholar
  3. 74.
    G. Ourisson, Y. Nakatani, “Origins of Cellular Life: Molecular Foundations and New Approaches”, Tetrahedron, 55, 3183 (1999)CrossRefGoogle Scholar
  4. 75.
    A. Kamino, K. Ariga, T. Kunitake, V. Birault, G. Pozzi, Y. Nakatani, G. Ourisson, “Reinforcing Effect of Polyterpenoids on Polyprenyl Phosphate Monolayers”, Colloid Surf., A, 103, 183 (1995)CrossRefGoogle Scholar
  5. 76.
    K. Ariga, H. Yuki, J. Kikuchi, O. Dannenmuller, A.M. Albrecht-Gary, Y. Nakatani, G. Ourisson, “Monolayer Studies of Single-Chain Polyprenyl Phosphates”, Langmuir, 21, 4578 (2005)CrossRefGoogle Scholar
  6. 77.
    T. Kunitake, Y. Okahata, “Totally Synthetic Bilayer Membrane”, J. Am. Chem. Soc., 99, 3860 (1977)CrossRefGoogle Scholar
  7. 78.
    T. Kunitake, “Synthetic Bilayer Membranes — Molecular Design, Self-Organization, and Application”, Angew. Chem. Int. Ed., 31, 709 (1992)CrossRefGoogle Scholar
  8. 79.
    H. Ringsdorf, B. Schlarb, J. Venzmer, “Molecular Architecture and Function of Polymeric Oriented System — Models for the Study of Organization Surface Recognition and Dynamics of Biomembranes”, Angew. Chem. Int. Ed., 27, 113 (1988)CrossRefGoogle Scholar
  9. 80.
    A. Mueller, D. F. O’Brien, “Supramolecular Materials via Polymerization of Mesophases of Hydrated Amphiphiles”, Chem. Rev., 102, 727 (2002)CrossRefGoogle Scholar
  10. 81.
    T. Kunitake, Y. Okahata, M. Shimomura, S. Yasunami, K. Takarabe, “Formation of Stable Bilayer Assemblies in Water from Single-Chain Amphiphiles: Relationship between the Amphiphilic Structure and the Aggregate Morphology”, J. Am. Chem. Soc., 103, 5401 (1981)CrossRefGoogle Scholar
  11. 82.
    T. Kunitake, N. Kimizuka, N. Higashi, N. Nakashima, “Bilayer-Membranes of Triple-Chain Ammonium Amphiphiles”, J. Am. Chem. Soc., 106, 1978 (1984)CrossRefGoogle Scholar
  12. 83.
    N. Kimizuka, H. Ohira, M. Tanaka, T. Kunitake, “Bilayer Membranes of Four Chained Ammonium Amphiphiles”, Chem. Lett., 29 (1990)Google Scholar
  13. 84.
    T. Kunitake, Y. Okahata, S. Yasunami, “Formation and Enhanced Stability of Fluoroalkyl Bilayer Membranes”, J. Am. Chem. Soc., 104, 5547 (1982)CrossRefGoogle Scholar
  14. 85.
    T. Kunitake, “Aqueous Bilayer Dispersions, Cast Multilayer Films, and Langmuir-Blodgett Films of Azobenzene-Containing Amphiphiles”, Colloid Surf., 19, 225 (1986)CrossRefGoogle Scholar
  15. 86.
    S. Asakuma, H. Okada, T. Kunitake, “Template Synthesis of Two-Dimensional Network of Cross-Linked Acrylate Polymer in a Cast Multibilayer Film”, J. Am. Chem. Soc., 113, 1749 (1991)CrossRefGoogle Scholar
  16. 87.
    K. Katagiri, K. Ariga, J. Kikuchi, “Preparation of Organic-Inorganic Hybrid Vesicle “Cerasome” Derived from Artificial Lipid with Alkoxysilyl Head”, Chem. Lett., 661 (1999)Google Scholar
  17. 88.
    K. Katagiri, R. Hamasaki, K. Ariga, J. Kikuchi, “Layered Paving of Vesicular Nanoparticles Formedwith Cerasome as a Bioinspired Organic-Inorganic Hybrid”, J. Am. Chem. Soc., 124, 7892 (2002)CrossRefGoogle Scholar
  18. 89.
    K. Katagiri, R. Hamasaki, K. Ariga, J. Kikuchi, “Layer-by-Layer Self-Assembling of Liposomal Nanohybrid Cerasome on Substrates”, Langmuir, 18, 6709 (2002)CrossRefGoogle Scholar
  19. 90.
    Y. Ishikawa, H. Kuwahara, T. Kunitake, “Self-Assembly of Bilayers from Double-Chain Fluorocarbon Amphiphiles in Aprotic Organic Solvents: Thermodynamic Origin and Generalization of the Bilayer Assembly”, J. Am. Chem. Soc., 116, 5579 (1994)CrossRefGoogle Scholar
  20. 91.
    N. Kimizuka, T. Kawasaki, K. Hirata, T. Kunitake, “Supramolecular Membranes. Spontaneous Assembly of Aqueous Bilayer Membrane via Formation of Hydrogen Bonded Pairs of Melamine and Cyanuric Acid Derivatives”, J. Am. Chem. Soc., 120, 4094 (1998)CrossRefGoogle Scholar


  1. 92.
    W. Adamson, “Physical Chemistry of Surfaces, 5th Edition”, Wiley, New York (1990)Google Scholar
  2. 93.
    G.L. Gaines, Jr., “Insoluble Monolayers at Liquid-Gas Interfaces”, Wiley, New York (1966)Google Scholar
  3. 94.
    J.A. Zasadzinkski, R. Viswanathan, L. Madsen, J. Garnaes, D.K. Schwartz, “Langmuir-Blodgett Films”, Science, 263, 1726 (1994)Google Scholar
  4. 95.
    T. Kato, “What is the Characteristic Time of Measurement of π-A Isotherms-Necessity of a Constant Strain Rate of Compression of Insoluble Monolayer for π-A Measurements”, Langmuir, 6, 870 (1990)CrossRefGoogle Scholar
  5. 96.
    K. Fukuda, H. Nakahara, T. Kato, “Monolayer and Multilayers of Anthraquinone Derivatives Containing Long Alkyl Chains”, J. Colloid Interf. Sci., 54, 430 (1976)CrossRefGoogle Scholar
  6. 97.
    M. Iwahashi, F. Naito, N. Watanabe, T. Seimiya, N. Morikawa, N. Nogawa, T. Ohshima, H. Kawakami, K. Ukai, I. Sugai, S. Shibata, T. Yasuda, Y. Shoji, T. Suzuki, T. Nagafuchi, H. Taketani, T. Matsuda, Y. Fukushima, M. Fujioka, K. Hisatake, “A Method for Preparing a Large-Sized, Uniform and Stable Built-Up Film Cd-109 Icosanate as a Radioactive Source by Utilization of an Extremely Small Amount of Substrate Solution”, Bull. Chem. Soc. Jpn., 58, 2093 (1985)CrossRefGoogle Scholar
  7. 98.
    T. Kato, “Studies of the Fully-Automatic Horizontal Lifting Deposition of LB Films Using Double Gates”, Jpn. J. Appl. Phys., Part 2, Lett., 27, L1358 (1988)CrossRefGoogle Scholar
  8. 99.
    A. Barraud, J. Leloup, A. Gouzerh, S. Palacin, “An Automatic Trough to Make Alternate Layers”, Thin Solid Films, 133, 117 (1985)CrossRefGoogle Scholar
  9. 100.
    W. Nitsch, C. Kurthen, “Convective Monolayer Compression in Channel Flow Behavior and Transfer of Soluble and Insoluble Films”, Thin Solid Films, 178, 145 (1989)CrossRefGoogle Scholar
  10. 101.
    T. Kato, “Studies on the Molecular Overturn during Compulsory Z-Type Deposition of LB Films Using Double Gates”, Chem. Lett., 1993 (1988)Google Scholar
  11. 102.
    K. Ariga, Y. Okahata, “In Situ Characterization of Langmuir-Blodgett Films during a Transfer Process. Evaluation of Transfer Ratio and Water Incorporation by Using a Quartz Crystal Microbalance”, Langmuir, 10, 3255 (1994)CrossRefGoogle Scholar
  12. 103.
    Y. Okahata, K. Ariga, K. Tanaka, “Evaluation of a Horizontal Lifting Method of Langmuir-Blodgett Films Using a Quartz-Crystal Microbalance”, Thin Solid Films, 210, 702 (1992)CrossRefGoogle Scholar
  13. 104.
    Y. Okahata, K. Kimura, K. Ariga, “Detection of the Phase Transition of Langmuir-Blodgett Films on a Quartz-Crystal Microbalance in an Aqueous Phase”, J. Am. Chem. Soc., 111, 9190 (1989)CrossRefGoogle Scholar
  14. 105.
    H. Kuhn, “Present Status and Future Prospects of Langmuir-Blodgett Film Research”, Thin Solid Films, 178, 1 (1989)CrossRefGoogle Scholar
  15. 106.
    P.S. Vincett, G.G. Roberts, “Electrical and Photo-Electrical Transport Properties of Langmuir-Blodgett Films and a Discussion of Possible Device Applications”, Thin Solid Films, 68, 135 (1980)CrossRefGoogle Scholar
  16. 107.
    A. Kraft, A.C. Grimsdale, A.B. Holmes, “Electroluminescent Conjugated Polymers — Seeing Polymers in a New Light”, Angew. Chem. Int. Ed., 37, 402 (1998)CrossRefGoogle Scholar
  17. 108.
    G.G. Roberts, “An Applied Science Perspective of Langmuir-Blodgett Films”, Adv. Mater., 34, 475 (1985)Google Scholar


  1. 109.
    C.D. Bain, E.B. Troughton, Y.T. Tao, J. Evall, G.M. Whitesides, R.G. Nuzzo, “Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold”, J. Am. Chem. Soc., 111, 321 (1989)CrossRefGoogle Scholar
  2. 110.
    R.G. Nuzzo, D.L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold”, J. Am. Chem. Soc., 105, 4481 (1983)CrossRefGoogle Scholar
  3. 111.
    L.H. Dubois, R.G. Nuzzo, “Synthesis, Structure, and Properties of Model Organic Surfaces”, Annu. Rev. Phys. Chem., 43, 437 (1992)Google Scholar
  4. 112.
    A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., 96, 1533 (1996)CrossRefGoogle Scholar
  5. 113.
    Y. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides, “Unconventional Methods for Fabricating and Patterning Nanostructures”, Chem. Rev., 99, 1823 (1999)CrossRefGoogle Scholar
  6. 114.
    J. Sagiv, “Organized Monolayers by Adsorption 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces”, J. Am. Chem. Soc., 102, 92 (1980)CrossRefGoogle Scholar
  7. 115.
    F. Schreiber, “Structure and Growth of Self-Assembling Monolayers”, Prog. Surf. Sci., 65, 151 (2000)CrossRefGoogle Scholar
  8. 116.
    L. Netzer, J. Sagiv, “A New Approach to Construction of Artificial Monolayer Assemblies”, J. Am. Chem. Soc., 105, 674 (1983)CrossRefGoogle Scholar
  9. 117.
    M.K. Chaudhury, G.M. Whitesides, “How to Make Water Run Uphill”, Science, 256, 1539 (1992)Google Scholar
  10. 118.
    N.L. Abbott, J.P. Folkers, G.M. Whitesides, “Manipulating the Wettability of Surfaces on the 0.1μm to 1μm Scale through Micromachining and Molecular Self-Assembly”, Science, 257, 1380 (1992)Google Scholar
  11. 119.
    K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, “Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by Command Surfaces Modified with Azobenzene Monolayer”, Langmuir, 4, 1214 (1988)CrossRefGoogle Scholar
  12. 120.
    K. Ichimura, S.K. Oh, M. Nakagawa, “Light-Driven Motion of Liquids on a Photoresponsive Surface”, Science, 288, 1624 (2000)CrossRefGoogle Scholar
  13. 121.
    Y. Maeda, T. Fukuda, H. Yamamoto, H. Kitano, “Regio-and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode”, Langmuir, 13, 4187 (1997)CrossRefGoogle Scholar
  14. 122.
    T. Wink, S.J. van Zuilen, A. Bult, W.P. van Bennekom, “Self-Assembled Monolayers for Biosensors”, Analyst, 122, R43 (1997)CrossRefGoogle Scholar
  15. 123.
    I. Rubinstein, S. Steinberg, Y. Tor, A. Shanzer, J. Sagiv, “Ionic Recognition and Selective Response in Self-Assembling Monolayer Membranes on Electrodes”, Nature, 332, 426 (1988)CrossRefGoogle Scholar
  16. 124.
    K.D. Schierbaum, T. Weiss, E.U.T. van Velzen, J.F.J. Engbersen, D.N. Reinhoudt, W. Göpel, “Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors”, Science, 265, 1413 (1994)Google Scholar
  17. 125.
    R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, “Dip-Pen Nanolithography”, Science, 283, 661 (1999)CrossRefGoogle Scholar
  18. 126.
    K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich, “Protein Nanoarrays Generated by Dip-Pen Nanolithography”, Science, 295, 1702 (2002)CrossRefGoogle Scholar
  19. 127.
    M.R. Linford, P. Fenter, P.M. Eisenberger, C.E.D. Chidsey, “Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon”, J. Am. Chem. Soc., 117, 3145 (1995)CrossRefGoogle Scholar


  1. 128.
    G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites”, Science, 277, 1232 (1977)CrossRefGoogle Scholar
  2. 129.
    J.H. Fendler, “Self-Assembled Nanostructured Materials”, Chem. Mater., 8, 1616 (1996)CrossRefGoogle Scholar
  3. 130.
    P. Bertrand, A. Jonas, A. Laschewsky, R. Legras, “Ultrathin Polymer Coatings by Complexation of Polyelectrolytes at Interfaces: Suitable Materials, Structure and Properties”, Macromol. Rapid Commun., 21, 319 (2000)CrossRefGoogle Scholar
  4. 131.
    S.W. Keller, H.N. Kim, T.E. Mollouk, “Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surface — Toward Molecular Beaker Epitaxy”, J. Am. Chem. Soc., 116, 8817 (1994)CrossRefGoogle Scholar
  5. 132.
    G. Decher, J.D. Hong, J. Schmitt, “Build-Up of Ultrathin Multilayer Films by a Self-Assembly Process 3. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces”, Thin Solid Films, 210, 831 (1992)CrossRefGoogle Scholar
  6. 133.
    Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, “Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption”, J. Am. Chem. Soc., 117, 6117 (1995)CrossRefGoogle Scholar
  7. 134.
    F. Caruso, D.N. Furlong, K. Ariga, I. Ichinose, T. Kunitake, “Characterization of Polyelectrolyte-Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflection-Absorption Spectroscopy”, Langmuir, 14, 4559 (1998)CrossRefGoogle Scholar
  8. 135.
    Y. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, “Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions”, Langmuir, 13, 6195 (1997)CrossRefGoogle Scholar
  9. 136.
    Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, “Formation of Ultrathin Multilayer and Hydrated Gel from Montmorillonite and Linear Polycations”, Langmuir, 12, 3038 (1996)CrossRefGoogle Scholar
  10. 137.
    K. Ariga, Y. Lvov, T. Kunitake, “Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption”, J. Am. Chem. Soc., 119, 2224 (1997)CrossRefGoogle Scholar
  11. 138.
    N.A. Kotov, I. Dekany, J.H. Fendler, “Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films”, J. Phys. Chem., 99, 13065 (1995)CrossRefGoogle Scholar
  12. 139.
    D. Yoo, S.S. Shiratori, M.F. Rubner, “Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes”, Macromolecules, 31, 4309 (1998)CrossRefGoogle Scholar
  13. 140.
    M. Ferreira, J.H. Cheung, M.F. Rubner, “Molecular Self-Assembly of Conjugated Polyions — A New Process for Fabricating Multilayer Thin Film Heterostructures”, Thin Solid Films, 244, 806 (1994)CrossRefGoogle Scholar
  14. 141.
    G. Decher, B. Lehr, K. Lowack, Y. Lvov, J. Schmitt, “New Nanocomposite Films for Biosensors — Layer-by-Layer Adsorbed Films of Polyelectrolytes, Proteins or DNA”, Biosensor Bioelectron., 9, 677 (1994)CrossRefGoogle Scholar
  15. 142.
    I. Ichinose, K. Fujiyoshi, S. Mizuki, Y. Lvov, T. Kunitake, “Layer-by-Layer Assembly of Aqueous Bilayer Membranes on Charged Surfaces”, Chem. Lett., 257 (1996)Google Scholar
  16. 143.
    Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, “Layer-by-Layer Architectures of Concanavalin A by Means of Electrostatic and Biospecific Interactions”, J. Chem. Soc., Chem. Commun., 2313 (1995)Google Scholar
  17. 144.
    Y. Lvov, H. Haas, G. Decher, H. Möhwald, A. Mikhailov, B. Mtchedlishvily, E. Morgunova, B. Vanishtein, “Successive Deposition of Alternate Layers of Polyelectrolytes and a Charged Virus”, Langmuir, 10, 4232 (1994)CrossRefGoogle Scholar
  18. 145.
    T. Serizawa, K. Hamada, T. Kitayama, N. Fujimoto, K. Hatada, M. Akashi, “Stepwise Stereocomplex Assembly of Stereoregular Poly(Methyl Methacrylate)s on a Substrate”, J. Am. Chem. Soc., 122, 1891 (2000)CrossRefGoogle Scholar
  19. 146.
    T. Serizawa, K. Hamada, M. Akashi, “Polymerization Within a Molecular-Scale Stereoregular Template”, Nature, 429, 52 (2004)CrossRefGoogle Scholar
  20. 147.
    Y. Shimazaki, M. Mitsuishi, S. Ito, M. Yamamoto, “Preparation and Characterization of the Layer-by-Layer Deposited Ultrathin FilmBased on the Charge-Transfer Interaction in Organic Solvents”, Langmuir, 14, 2768 (1998)CrossRefGoogle Scholar
  21. 148.
    M. Onda, Y. Lvov, K. Ariga, T. Kunitake, “Sequential Actions of Glucose Oxidase and Peroxidase in Molecular Films Assembled by Layer-by-Layer Alternate Adsorption”, Biotech. Bioeng., 51, 163 (1996)CrossRefGoogle Scholar
  22. 149.
    M. Onda, L. Lvov, K. Ariga, T. Kunitake, “Sequential Reaction and Product Separation on Molecular Films of Glucoamylase and Glucose Oxidase Assembled on an Ultrafilter”, J. Ferment. Bioeng., 82, 502 (1996)CrossRefGoogle Scholar
  23. 150.
    M. Onda, K. Ariga, T. Kunitake, “Activity and Stability of Glucose Oxidase in Molecular Films Assembled Alternately with Polyions”, J. Biosci. Bioeng., 87, 69 (1999)CrossRefGoogle Scholar
  24. 151.
    F. Caruso, “Nanoengineering of Particle Surfaces”, Adv. Mater., 13, 11 (2001)CrossRefGoogle Scholar
  25. 152.
    F. Caruso, R.A. Caruso, H. Möhwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating”, Science, 282, 1111 (1998)CrossRefGoogle Scholar
  26. 153.
    Y. Lvov, A.A. Antipov, A. Mamedov, H. Möhwald, G.B. Sukhorukov, “Urease Encapsulation in Nanoorganized Microshells”, Nano Lett., 1, 125 (2001)CrossRefGoogle Scholar


  1. 154.
    J.H. Fuhrhop, W. Helfrich, “Fluid and Solid Fibers Made of Lipid Molecular Bilayers”, Chem. Rev., 93, 1565 (1993)CrossRefGoogle Scholar
  2. 155.
    J.M. Schnur, “Lipid Tubules: A Paradigm for Molecularly Engineered Structures”, Science, 262, 1669 (1993)Google Scholar
  3. 156.
    T. Kunitake, “Synthetic Bilayer Membranes: Molecular Design, Self-Organization, and Application”, Angew. Chem. Int. Ed., 31, 709 (1992)CrossRefGoogle Scholar
  4. 157.
    D.T. Bong, T.D. Clark, J.R. Granja, M.R. Ghadiri, “Self-Assembling Organic Nanotubes”, Angew. Chem. Int. Ed., 40, 988 (2001)CrossRefGoogle Scholar
  5. 158.
    G.W. Orr, L.J. Barbour, J.L. Atwood, “Controlling Molecular Self-Organization: Formation of Nanometer-Scale Spheres and Tubules”, Science, 285, 1049 (1999)CrossRefGoogle Scholar
  6. 159.
    T. Shimizu, M. Masuda, H. Minamikawa, “Supramolecular Nanotube Architectures Based on Amphiphilic Molecules”, Chem. Rev., 105, 1401 (2005)CrossRefGoogle Scholar
  7. 160.
    N. Nakashima, S. Asakuma, T. Kunitake, “Optical Microscopic Study of Helical Superstructures of Chiral Bilayer Membranes”, J. Am. Chem. Soc., 107, 509 (1985)CrossRefGoogle Scholar
  8. 161.
    N. Yamada, K. Ariga, M. Naito, K. Matsubara, E. Koyama, “Regulation of β-Sheet Structures within Amyloid-Like β-Sheet Assemblage from Tripeptide Derivatives”, J. Am. Chem. Soc., 120, 12192 (1998)CrossRefGoogle Scholar
  9. 162.
    K. Ariga, J. Kikuchi, M. Naito, E. Koyama, N. Yamada, “Modulated Supramolecular Assemblies Composed of Tripeptide Derivatives: Formation of Micrometer-Scale Rods, Nanometer-Size Needles, and Regular Patternswith Molecular-Level Flatness from the Same Compound”, Langmuir, 16, 4929 (2000)CrossRefGoogle Scholar
  10. 163.
    D.A. Frankel, D. F. O’Brien, “Supramolecular Assemblies of Diacetylenic Aldonamides”, J. Am. Chem. Soc., 116, 10057 (1994)CrossRefGoogle Scholar
  11. 164.
    J.H. Fuhrhop, P. Blumtritt, C. Lehmann, P. Luger, “Supramolecular Assemblies, a Crystal Structure, and a Polymer of N-Diacetylenic Gluconamides”, J. Am. Chem. Soc., 113, 7437 (1991)CrossRefGoogle Scholar
  12. 165.
    T. Shimizu, S. Ohnishi, M. Kogiso, “Cross-Section Molecular Imaging of Supramolecular Microtubes with Contact Atomic Force Microscopy”, Angew. Chem. Int. Ed., 37, 3260 (1998)CrossRefGoogle Scholar
  13. 166.
    T. Shimizu, M. Kogiso, M. Masuda, “Vesicle Assembly in Microtubes”, Nature, 383, 487 (1996)CrossRefGoogle Scholar
  14. 167.
    C.F. Vannostrum, S.J. Picken, A.J. Schouten, R.J.M. Nolte, “Synthesis and Supramolecular Chemistry of Novel Liquid-Crystalline Crown Ether-Substituted Phthalocyanines Toward Molecular Wires and Molecular Ionelectronics”, J. Am. Chem. Soc., 117, 9957 (1995)CrossRefGoogle Scholar
  15. 168.
    H. Engelkamp, S. Middelbeek, R.J.M. Nolte, “Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity”, Science, 284, 785 (1999)CrossRefGoogle Scholar
  16. 169.
    K. Hanabusa, M. Yamada, M. Kimura, H. Shirai, “Prominent Gelation and Chiral Aggregation of Alkylamides Derived from trans-1,2-Diaminocyclohexane”, Angew. Chem. Int. Ed., 35, 1949 (1996)CrossRefGoogle Scholar
  17. 170.
    V. Percec, C.H. Ahn, G. Ungar, D.J.P. Yeardley, M. Moller, S.S. Sheiko, “Controlling Polymer Shape through the Self-Assembly of Dendritic Side-Groups”, Nature, 391, 161 (1998)CrossRefGoogle Scholar
  18. 171.
    N. Kimizuka, “Toward Self-Assembling Inorganic Molecular Wires”, Adv. Mater., 12, 1461 (2000)CrossRefGoogle Scholar


  1. 172.
    L.M. Greig, D. Philp, “Applying Biological Principles to the Assembly and Selection of Synthetic Superstructures”, Chem. Soc. Rev., 30, 287 (2001)CrossRefGoogle Scholar
  2. 173.
    M. Shimomura, T. Sawadaishi, “Bottom-Up Strategy of Materials Fabrication: A New Trend in Nanotechnology of Soft Materials”, Curr. Opin. Colloid Sci., 6, 11 (2001)CrossRefGoogle Scholar
  3. 174.
    H.O. Jacobs, G.M. Whitesides, “Submicrometer Patterning of Charge in Thin-Film Electrets”, Science, 291, 1763 (2001)CrossRefGoogle Scholar
  4. 175.
    J. Aizenberg, A.J. Black, G.M. Whitesides, “Control of Crystal Nucleation by Patterned Self-Assembled Monolayers”, Nature, 398, 495 (1999)CrossRefGoogle Scholar
  5. 176.
    S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, “Self-Oriented Regular Array of Carbon Nanotubes and Their Field Emission Properties”, Science, 283, 512 (1999)CrossRefGoogle Scholar


  1. 177.
    K. Ariga, T. Kunitake, “Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction”, Acc. Chem. Res., 31, 371 (1998)CrossRefGoogle Scholar
  2. 178.
    K. Ariga, “Template-Assisted Nano-Patterning from Submicron-Scale to Submolecular-Level”, J. Nanosci. Nanotech., 4, 23 (2004)CrossRefGoogle Scholar
  3. 179.
    Y. Oishi, Y. Torii, T. Kato, M. Kuramori, K. Suehiro, K. Ariga, K. Taguchi, A. Kamino, H. Koyano, T. Kunitake, “Molecular Patterningofa Guanidinium/Orotate Mixed Monolayer through Molecular Recognition with Flavin Adenine Dinucleotide”, Langmuir, 13, 519 (1997)CrossRefGoogle Scholar
  4. 180.
    Y. Oishi, Y. Torii, M. Kuramori, K. Suehiro, K. Ariga, K. Taguchi, A. Kamino, T. Kunitake, “Two-Dimensional Molecular Patterning through Molecular Recognition”, Chem. Lett., 6, 411 (1996)CrossRefGoogle Scholar
  5. 181.
    K. Taguchi, K. Ariga, T. Kunitake, “Multi-Site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water”, Chem. Lett., 701 (1995)Google Scholar
  6. 182.
    H. Koyano, K. Yoshihara, K. Ariga, T. Kunitake, Y. Oishi, O. Kawano, M. Kuramori, K. Suehiro, “Atomic Force Microscopic Observation of a Dialkylmelamine Monolayer on Barbituric Acid”, Chem. Commun., 1769 (1996)Google Scholar
  7. 183.
    H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, T. Kumitake, “Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid”, Chem. Eur. J., 3, 1077 (1997)Google Scholar
  8. 184.
    Y. Oishi, T. Kato, M. Kuramori, K. Suehiro, K. Ariga, A. Kamino, H. Koyano, T. Kunitake, “Control of Molecular Ordering in Guanidinium-Functionalized Monolayer by Carboxylate Template Molecules”, Chem. Commun., 1357 (1997)Google Scholar
  9. 185.
    P. Bissel, M. Onda, K. Yoshihara, H. Koyano, K. Ariga, T. Kunitake, Y. Oishi, K. Suehiro, “Heptopus, a Novel Class of Amphiphiles with Seven Alkyl Chains. Synthesis and Monolayer Property”, Langmuir, 15, 1791 (1999)CrossRefGoogle Scholar
  10. 186.
    K. Ariga, R. Tanaka, J. Kikuchi, M. Higuchi, K. Yamamoto, “Stoichiometric Complexes between Cyclic Phenylazomethines and a Dialkyl Phosphate for Molecular Tiling at the Air-Water Interface”, J. Nanosci. Nanotech., 2, 669 (2002)CrossRefGoogle Scholar
  11. 187.
    A.S. Shetty, P.R. Fischer, K.F. Stork, P.W. Bohn, J.S. Moore, “Assembly of Amphiphilic Phenylacetylene Macrocycles at the Air-Water Interface and on Solid Surfaces”, J. Am. Chem. Soc., 118, 9409 (1996)CrossRefGoogle Scholar
  12. 188.
    O.Y. Mindyuk, M.R. Stetzer, D. Gidalevitz, P.A. Heiney, J.C. Nelson, J.S. Moore, “Structure of a Phenylacetylene Macrocycle at the Air-Water Interface”, Langmuir, 15, 6897 (1999)CrossRefGoogle Scholar
  13. 189.
    D. Zhao, J.S. Moore, “Shape-Persistent Arylene Ethylene Macrocycles: Syntheses and Supramolecular Chemistry”, Chem. Commun., 807 (2003)Google Scholar
  14. 190.
    J.T. Culp, J.-H. Park, D. Stratakis, M.W. Meisel, D.R. Talham, “Supramolecular Assembly at Interfaces: Formation of an Extended Two-Dimensional Coordinate Covalent Square Grid Network at the Air-Water Interface”, J. Am. Chem. Soc., 124, 10083 (2002)CrossRefGoogle Scholar
  15. 191.
    E. Winfree, F.R. Liu, L.A. Wenzler, N.C. Seeman, “Design and Self-Assembly of Two-Dimensional DNA Crystals”, Nature, 394, 539 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations