Advertisement

Controlling Supramolecular Topology — The Art of Building Supermolecules

Keywords

Carbon Nanotubes Crown Ether Supramolecular Chemistry Soccer Ball Molecular Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

3.1

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, “C60 — Buckminsterfullerene”, Nature, 318, 162 (1985)CrossRefGoogle Scholar
  2. 2.
    H.W. Kroto, A.W. Allaf, S.P. Balm, “C60 — Buckminsterfullerene”, Chem. Rev., 91, 1213 (1991)CrossRefGoogle Scholar
  3. 3.
    R.E. Smalley, “Discovering the Fullerenes”, Rev. Mod. Phys., 69, 723 (1997)CrossRefGoogle Scholar
  4. 4.
    J.H. Weaver, J.L. Martins, T. Komeda, Y. Chen, T.R. Ohno, G.H. Kroll, N. Troullier, R.E. Haufler, R.E. Smalley, “Electronic Structure of Solid C60: Experiment and Theory”, Phys. Rev. Lett., 66, 1741 (1991)CrossRefGoogle Scholar
  5. 5.
    E. Sohmen, J. Fink, W. Kratschmer, “Electronic-Structure Studies of Undoped and N-Type Doped Fullerene C60”, Europhys. Lett., 17, 51 (1992)Google Scholar
  6. 6.
    D.S. Bethune, R.D. Johnson, J.R. Salem, M.S. Devries, C.S. Yannoni, “Atoms in Carbon Cages — The Structure and Properties of Endohedral Fullerenes”, Nature, 366, 123 (1993)CrossRefGoogle Scholar
  7. 7.
    G.W. Wang, K. Komatsu, Y. Murata, M. Shiroo, “Synthesis and X-Ray Structure of Dumb-Bell-Shaped C120”, Nature, 387, 583 (1997)CrossRefGoogle Scholar
  8. 8.
    M. Prato, “[60] Fullerene Chemistry for Materials Science Applications”, J. Mater. Chem., 7, 1097 (1997)CrossRefGoogle Scholar
  9. 9.
    S. Zhou, C. Burger, B. Chu, M. Sawamura, N. Nagahama, M. Toganoh, U.E. Hackler, H. Isobe, E. Nakamura, “Spherical Bilayer Vesicles of Fullerene-Based Surfactants in Water: A Laser Light Scattering Study”, Science, 291, 1944 (2001)CrossRefGoogle Scholar
  10. 10.
    T. Nakanishi, W. Schmitt, T. Michinobu, D.G. Kurth, K. Ariga, “Hierarchical Supramolecular Fullerene Architectures with Controlled Dimensionality”, Chem. Commun., 5982 (2005)Google Scholar

3.2

  1. 11.
    S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354, 56 (1991)CrossRefGoogle Scholar
  2. 12.
    P.M. Ajayan, “Nanotube from Carbon”, Chem. Rev., 99, 1787 (1999)CrossRefGoogle Scholar
  3. 13.
    R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, “Conductivity Enhancement in Single-Walled Carbon Nanotube Bundles Doped with K and Br”, Nature, 388, 255 (1997)CrossRefGoogle Scholar
  4. 14.
    B.W. Smith, M. Monthioux, D.E. Luzzi, “Encapsulated C60 in Carbon Nanotubes”, Nature, 396, 323 (1998)CrossRefGoogle Scholar
  5. 15.
    M.S. Dresselhaus, P.C. Eklund, “Phonons in Carbon Nanotubes”, Adv. Phys., 49, 705 (2000)CrossRefGoogle Scholar
  6. 16.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube”, Nature, 393, 49 (1998)CrossRefGoogle Scholar
  7. 17.
    W.A. Deherr, A. Chatelain, D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”, Science, 270, 1179 (1995)Google Scholar
  8. 18.
    W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, “Synthesis of Gallium Nitride Nanorods through a Carbon Nanotube-Confined Reaction”, Science, 277, 1287 (1997)CrossRefGoogle Scholar
  9. 19.
    L. Schlapbach, A. Züttel, “Hydrogen Storage Materials for Mobile Applications”, Nature, 414, 353 (2001)CrossRefGoogle Scholar
  10. 20.
    C.L. Cheung, J.H. Hafner, C.M. Lieber, “Carbon Nanotube Atomic Force Microscopy Tips: Direct Growth by Chemical Vapor Deposition and Application to High-Resolution Imaging”, Proc. Natl. Acad. Sci. USA, 97, 3809 (2000)CrossRefGoogle Scholar
  11. 21.
    J.H. Hafner, C.L. Cheung, C.M. Lieber, “Growth of Nanotubes for Probe Microscopy Tips”, Nature, 398, 761 (1999)CrossRefGoogle Scholar
  12. 22.
    Y. Gao, Y. Bando, “Carbon Nanothermometer Containing Gallium”, Nature, 415, 599 (2002)CrossRefGoogle Scholar
  13. 23.
    M. Sano, A. Kamino, J. Okamura, S. Shinkai, “Ring Closure of Carbon Nanotubes”, Science, 293, 1299 (2001)CrossRefGoogle Scholar
  14. 24.
    Y.-P. Sun, K. Fu, Y. Lin, W. Huang, “Functionalized Carbon Nanotubes: Properties and Applications”, Acc. Chem. Res., 35, 1096 (2002)CrossRefGoogle Scholar
  15. 25.
    A. Hirsch, “Functionalization of Single-Walled Carbon Nanotubes”, Angew. Chem. Int. Ed., 41, 1853 (2002)CrossRefGoogle Scholar
  16. 26.
    T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, “Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes”, Science, 300, 2072 (2003)CrossRefGoogle Scholar

3.3

  1. 27.
    D.A. Tomalia, S. Uppuluri, D.R. Swanson, J. Li, “Dendrimers as Reactive Modules for the Synthesis of New Structure-Controlled, Higher-Complexity Megamers”, Pure Appl. Chem., 72, 2343 (2000)Google Scholar
  2. 28.
    J.M.J. Fréchet, “Dendrimers and Supramolecular Chemistry”, Proc. Natl. Acad. Sci. USA, 99, 4782 (2002)CrossRefGoogle Scholar
  3. 29.
    D.A. Tomalia, J.M.J. Fréchet, “Discovery of Dendrimers and Dendritic Polymers: A Brief Historical Perspective”, J. Polym. Sci., Part A, Polym. Chem., 40, 2719 (2002)CrossRefGoogle Scholar
  4. 30.
    S.K. Grayson, J.M. J. Fréchet, “Convergent Dendrons and Dendrimers: fromSynthesis to Applications”, Chem. Rev. 101, 3819 (2001)CrossRefGoogle Scholar
  5. 31.
    A.W. Bosmann, H.M. Janssen, E.W. Meijer, “About Dendrimers: Structure, Physical Properties, and Applications”, Chem. Rev., 99, 1665 (1999)CrossRefGoogle Scholar
  6. 32.
    G.R. Newkome, E. He, C.N. Moorefield, “Suprasupermolecules with Novel Properties: Metallodendrimers”, Chem. Rev., 99, 1689 (1999)CrossRefGoogle Scholar
  7. 33.
    F. Zeng, S.C. Zimmerman, “Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly”, Chem. Rev., 97, 1681 (1997)CrossRefGoogle Scholar
  8. 34.
    V. Percec, M. Glodde, T.K. Bera, Y. Miura, J. Shiyanovskaya, K.D. Singer, V.S.K. Balagurusamy, P.A. Heiney, I. Schnell, A. Rapp, H.-M. Spiess, S.D. Hudson, H. Duan, “Self-Organization of Supramolecular Helical Dendrimers into Complex Electronic Materials”, Nature, 419, 384 (2002)CrossRefGoogle Scholar
  9. 35.
    O.A. Matthews, A.N. Shipway, J.F. Stoddart, “Dendrimers — Branching Out from Curiosities into New Technologies”, Prog. Polym. Sci., 23, 1 (1998)CrossRefGoogle Scholar
  10. 36.
    Y.H. Kim, “Hyperbrancheds Polymers 10 Years After”, J. Polym. Sci., Part A, Polym. Chem., 36, 1685 (1998)CrossRefGoogle Scholar
  11. 37.
    S. Hecht, J.M.J. Fréchet, “Dendritic Encapsulation of Function: Applying Nature’s Site Isolation Principle from Biomimetics to Material Science”, Angew. Chem. Int. Ed., 40, 74 (2001)CrossRefGoogle Scholar
  12. 38.
    K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, H. Chiba, “Stepwise Radical Complexation of Imine Groups in Phenylazomethine Dendrimers”, Nature, 415, 509 (2002)CrossRefGoogle Scholar
  13. 39.
    M. Higuchi, S. Shiki, K. Ariga, K. Yamamoto, Kimihisa, “First Synthesis of Phenylazomethine Dendrimer Ligands and Structural Studies”, J. Am. Chem. Soc., 123, 4414 (2001)CrossRefGoogle Scholar
  14. 40.
    M. Zhao, L. Sun, R.M. Crooks, “Preparation of Cu Nanoclusters within Dendrimer Templates”, J. Am. Chem. Soc., 120, 4877 (1998)CrossRefGoogle Scholar
  15. 41.
    P. Bhyrappa, J.K. Young, J.S. Moore, K.S. Suslick, “Dendrimer-Metalloporphyrins: Synthesis and Catalysis”, J. Am. Chem. Soc., 118, 5708 (1996)CrossRefGoogle Scholar
  16. 42.
    D.L. Jiang, T. Aida, “A Dendritic Iron Porphyrin as a Novel Haemoprotein Mimic: Effects of the Dendrimer Cage on Dioxygen-Binding Activity”, Chem. Commun., 1523–1524 (1996)Google Scholar
  17. 43.
    M. Enomoto, T. Aida, “Self-Assembly of a Copper-Ligating Dendrimer That Provides a New Non-Heme Metalloprotein Mimic: Dendrimer Effects on Stability of the Bis(muoxo) dicopper(III) Core”, J. Am. Chem. Soc., 121, 874 (1999)CrossRefGoogle Scholar
  18. 44.
    D.C. Tully, J.M.J. Fréchet, “Dendrimers at Surfaces and Interfaces: Chemistry and Applications”, Chem. Commun., 1229 (2001)Google Scholar
  19. 45.
    K. Ariga, T. Urakawa, A. Michiue, Y. Sasaki, J. Kikuchi, “Dendritic Amphiphiles: Dendrimers Having an Amphiphile Structure in Each Unit”, Langmuir, 16, 9147 (2000)CrossRefGoogle Scholar
  20. 46.
    K. Ariga, T. Urakawa, A. Michiue, J. Kikuchi, “Spider-Web Amphiphile as Artificial Lipid Clusters: Design, Synthesis, and Accommodation of Lipid Components at the Air-Water Interface”, Langmuir, 20, 6762 (2004)CrossRefGoogle Scholar
  21. 47.
    A.P.H.J. Schenning, C. Elissen-Roman, J.W. Weener, M.W.P.L. Baars, S.J. van der Gaast, E.W. Meijer, “Amphiphilic Dendrimers as Building Blocks in Supramolecular Assemblies”, J. Am. Chem. Soc., 120, 8199 (1998)CrossRefGoogle Scholar
  22. 48.
    K. Tsutsumiuchi, K. Aoi, M. Okada, “Globular Carbohydrate Macromolecule “Sugar Balls” IV. Synthesis of Dendritic Nanocapsules with Molecular Recognition Sites on Periphery”, Polym. J., 31, 935 (1999)CrossRefGoogle Scholar
  23. 49.
    R. Sadamoto, N. Tomioka, T. Aida, “Photoinduced Electron Transfer Reactions through Dendrimer Architecture”, J. Am. Chem. Soc., 118, 3978 (1996)CrossRefGoogle Scholar
  24. 50.
    N. Tomioka, D. Takasu, T. Takahashi, T. Aida, “Electrostatic Assembly of Dendrimer Electrolytes: Negatively and Positively Charged Dendrimer Porphyrins”, Angew. Chem. Int. Ed., 37, 1531 (1998)CrossRefGoogle Scholar
  25. 51.
    D.-L. Jiang, T. Aida, “Photoisomerization in Dendrimers by Harvesting of Low-Energy Photons”, Nature, 388, 454 (1997)CrossRefGoogle Scholar
  26. 52.
    U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, “Light-Harvesting Dendrimers: Efficient Intra-and Intermolecular Energy-Transfer Processes in a Species Containing 65 Chromophoric Groups of Four Different Types”, Angew. Chem. Int. Ed., 41, 3595 (2002)CrossRefGoogle Scholar
  27. 53.
    A. Adronov, J. Fréchet, “Light-Harvesting Dendrimers”, Chem. Commun., 1701 (2000)Google Scholar

3.4

  1. 54.
    A. Harada, J. Li, M. Kamachi, “The Molecular Necklace: A Rotaxane Containing Many Threaded α-Cyclodextrin”, Nature, 356, 325 (1992)CrossRefGoogle Scholar
  2. 55.
    A. Harada, M. Kamachi, “Complex-Formation between Poly(ethylene glycol) and α-Cyclodextrin”, Macromolecules, 23, 2821 (1990)CrossRefGoogle Scholar
  3. 56.
    A. Harada, M. Kamachi, “Complex Formation between Cyclodextrin and Poly(propylene glycol)”, J. Chem. Soc., Chem. Commun., 1322 (1990)Google Scholar
  4. 57.
    S.A. Nepogodiev, J.F. Stoddart, “Cyclodextrin-Based Catenanes and Rotaxanes”, Chem. Rev., 98, 1959 (1998)CrossRefGoogle Scholar
  5. 58.
    X.P. Kong, R. Onrust, M. Odonnell, J. Kuriyan, “3-Dimensional Structure of the β-Subunit of Escherichia coli DNA Polymerase-III Holoenzyme — A Sliding DNA Clamp”, Cell, 69, 425 (1992)CrossRefGoogle Scholar
  6. 59.
    R. Kovall, B.W. Matthews, “Toroidal Structure of Lambda-Exonuclease”, Science, 277, 1824 (1997)CrossRefGoogle Scholar
  7. 60.
    Y. Liu, Y.-L. Zhao, H.-Y. Zhang, H.-B. Song, “Polymeric Rotaxane Constructed from the Inclusion Complex of β-Cyclodextrin and 4,4′-Dipyridine by Coordination with Nickel(II) Ions”, Angew. Chem. Int. Ed. 42, 3260 (2003)CrossRefGoogle Scholar
  8. 61.
    A. Harada, J. Li, M. Kamachi, “Synthesis of a Tublar Polymer from Threaded Cyclodextrins”, Nature, 364, 516 (1993)CrossRefGoogle Scholar
  9. 62.
    T. Takata, H. Kawasaki, N. Kihara, Y. Furusho, “Synthesis of Side-Chain Polyrotaxane by Radical Polymerizations of Pseudorotaxane Monomers Consisting of Crown Ether Wheel and Acrylate Axle Bearing Bulky End-Cap and Ammonium Group”, Macromolecules, 34, 5449 (2001)CrossRefGoogle Scholar
  10. 63.
    R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, “A Chemically and Electrochemically Switchable Molecular Shuttle”, Nature, 369, 133 (1994)CrossRefGoogle Scholar
  11. 64.
    M.C.T. Fyfe, J.F. Stoddart, “Synthetic Supramolecular Chemistry”, Acc. Chem. Res., 30, 393 (1997)CrossRefGoogle Scholar
  12. 65.
    A.E. Kaifer, “Interplay between Molecular Recognition and Redox Chemistry”, Acc. Chem. Res., 32, 62 (1999)CrossRefGoogle Scholar
  13. 66.
    R. Ballardini, V. Balzani, A. Credi, M.T. Gandolfi, M. Venturi, “Artificial Molecular-Level Machines: Which Energy to Make Them Work?”, Acc. Chem. Res., 34, 445 (2001)CrossRefGoogle Scholar
  14. 67.
    A. Harada, “Cyclodextrin-Based Molecular Machines”, Acc. Chem. Res., 34, 456 (2001)CrossRefGoogle Scholar

3.5

  1. 68.
    M. Fujita, “Self-Assembly of [2]Catenanes Containing Metals in Their Backbone”, Acc. Chem. Res., 32, 53 (1999)CrossRefGoogle Scholar
  2. 69.
    F.M. Raymo, J.F. Stoddart, “Interlocked Macromolecules”, Chem. Rev., 99, 1643 (1999)CrossRefGoogle Scholar
  3. 70.
    J.-P. Sauvage, “Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors”, Acc. Chem. Res., 31, 611 (1998)CrossRefGoogle Scholar
  4. 71.
    D.B. Amabilino, P.R. Ashton, A.S. Reder, N. Spencer, J.F. Stoddart, “Olympiadane”, Angew. Chem. Int. Ed., 33, 1286 (1994)CrossRefGoogle Scholar
  5. 72.
    R. Jager, F. Vögtle, “A New Synthetic Strategy Towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes”, Angew. Chem. Int. Ed., 36, 930 (1997)CrossRefGoogle Scholar
  6. 73.
    M. Fujita, N. Fujita, K. Ogura, K. Yamaguchi, “Spontaneous Assembly of Ten Components Into Two Interlocked, Identical Coordination Cages”, Nature, 400, 52 (1999)CrossRefGoogle Scholar
  7. 74.
    N. Takeda, K. Umemoto, K. Yamaguchi, M. Fujita, “A Nanometre-Sized Hexahedral Coordination Capsule Assembled from 24 Components”, Nature, 398, 794 (1999)CrossRefGoogle Scholar
  8. 75.
    S. Tashiro, M. Tominaga, T. Kusukawa, M. Kawano, S. Sakamoto, K. Yamaguchi, M. Fujita, “PdII-directed Dyanamic Assembly of a Dodecapyridine Ligand into End-Capped and Open Tubes: The Importance of Kinetic Control in Self-Assembly”, Angew. Chem. Int. Ed., 42, 3267 (2003)CrossRefGoogle Scholar
  9. 76.
    M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, “Moleclar Paneling via Coordination”, Chem. Commun., 509 (2001)Google Scholar
  10. 77.
    G. Lecollonet, A.P. Dominey, T. Velasco, A.P. Davis, “Highly Selective Disaccharide Recognition by a Tricyclic Octaamide Cage”, Angew. Chem. Int. Ed., 41, 4093 (2002)CrossRefGoogle Scholar
  11. 78.
    D.L. Caulder, K.N. Raymond, “Supermolecules by Design”, Acc. Chem. Res., 32, 975 (1999)CrossRefGoogle Scholar
  12. 79.
    K. Matsuura, T. Yamashita, Y. Igami, N. Kimizuka, “Nucleo-Nanocages: Designed Ternary Oligodeoxyribonucleotides Spontaneously Form Nanosized DNA Cages”, Chem. Commun., 376 (2003)Google Scholar
  13. 80.
    N.C. Seeman, “DNA Components for Molecular Architecture”, Acc. Chem. Res., 30, 357 (1997)CrossRefGoogle Scholar
  14. 81.
    N.C. Seeman, “DNA in a Material World”, Nature, 421, 427 (2003)CrossRefGoogle Scholar
  15. 82.
    J.J. Storhoff, C.A. Mirkin, “Programmed Materials Synthesis with DNA”, Chem. Rev., 99, 1849 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations