The Chemistry of Molecular Recognition — Host Molecules and Guest Molecules


Crown Ether Water Interface Guest Molecule Molecular Recognition Supramolecular Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    F.W. Lichtenthaler, “100 Years Schlüssel-Schloss-Prinzip — What Made Emil Fischer Use This Analogy?”, Angew. Chem. Int. Ed., 33, 2364 (1994)Google Scholar
  2. 2.
    D.E. Koshland, “The Key and Lock Theory and Induced-Fit Theory”, Angew. Chem. Int. Ed., 33, 2375 (1994)Google Scholar
  3. 3.
    D.J. Cram, J.M. Cram, “Host-Guest Chemistry”, Science, 183, 803 (1974)Google Scholar
  4. 4.
    C.J. Pedersen, “The Discovery of Crown Ethers (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 1021 (1988)CrossRefGoogle Scholar
  5. 5.
    J.-M. Lehn, “Supramolecular Chemistry — Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 89 (1988)CrossRefGoogle Scholar
  6. 6.
    D.J. Cram, “The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 1009 (1988)CrossRefGoogle Scholar


  1. 7.
    N. Yui ed., “Supramolecular Design for Biological Applications”, CRC Press, Boca Raton, 2002Google Scholar
  2. 8.
    J. Israelachvili, H. Wennerstrom, “Role of Hydration and Water Structure in Biological and Colloidal Interactions”, Nature, 379, 219 (1996)CrossRefGoogle Scholar
  3. 9.
    J.N. Israelachvili, R.M. Pashley, “Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces”, Nature, 306, 249 (1983)CrossRefGoogle Scholar
  4. 10.
    K. Kurihara, T. Kunitake, “Submicron-Range Attraction between Hydrophobic Surfaces of Monolayer-Modified Mica in Water”, J. Am. Chem. Soc., 114, 10927 (1992)CrossRefGoogle Scholar
  5. 11.
    M. Sakurai, H. Tamagawa, K. Ariga, T. Kunitake, Y. Inoue, “Molecular Dynamics Simulation of Water between Hydrophobic Surfaces. Implication for the Long-Range Hydrophobic Force”, Chem. Phys. Lett., 289, 567 (1998)CrossRefGoogle Scholar


  1. 12.
    C.J. Pedersen, H.K. Frensdor, “Macrocyclic Polyethers and Their Complexes”, Angew. Chem. Int. Ed., 11, 168 (1972)Google Scholar
  2. 13.
    R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L. Bruening, “Thermodynamic and Kinetic Data for Macrocycle Interaction with Cations and Anions”, Chem. Rev., 91, 1721 (1991)CrossRefGoogle Scholar
  3. 14.
    I.H. Chu, H. Zhang, D.V. Dearden, “Macrocyclic Chemistry in the Gas-Phase — Intrinsic Cation Affinities and Complexation Rates for Alkali-Metal Cation Complexes of Crown-Ethers and Glymes”, J. Am. Chem. Soc., 115, 5736 (1993)CrossRefGoogle Scholar
  4. 15.
    J.S. Bradshaw, R.M. Izatt, “Crown Ethers: The Search for Selective Ion Ligating Agents”, Acc. Chem. Res., 30, 338 (1997)CrossRefGoogle Scholar
  5. 16.
    A.E. Visser, R.P. Swatloski, W.M. Reichert, S.T. Griffin, R.D. Rogers, “Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids”, Ind. Eng. Chem. Res., 39, 3596 (2000)CrossRefGoogle Scholar
  6. 17.
    F. Vögtle, E. Weber, “Multi-Dentate Acyclic Neutral Ligands and Their Complexation”, Angew. Chem. Int. Ed., 18, 753 (1979)CrossRefGoogle Scholar
  7. 18.
    J.C. Mendina, T.T. Goodnow, M.T. Rojas, J.L. Atwood, B.C. Lynn, A.E. Kaifer, G.W. Gokel, “Ferrocenyl Iron as a Donor Group for Complexed Silver in Ferrocenyldimethyl[2,2]Cryptand — A Redox-Switched Receptor Effective in Water”, J. Am. Chem. Soc., 114, 10583 (1992)CrossRefGoogle Scholar
  8. 19.
    F. Kotyzyba-Hibert, J.-M. Lehn, K. Saigo, “Synthesis and Ammonium Cryptates of Triply Bridged Cylindrical Macrotetracycles”, J. Am. Chem. Soc., 103, 4266 (1981)CrossRefGoogle Scholar
  9. 20.
    M. Albrecht, H. Rottele, P. Burger, “Alkali-Metal Cation Binding by Self-Assembled Cryptand-Type Supermolecules”, Chem. Eur. J., 2, 1264 (1996)Google Scholar
  10. 21.
    R.B. Davidson, R.M. Izatt, J.J. Christensen, R.A. Shultz, D.M. Dishong, G.W. Gokel, “Stability-Constants, Enthalpies, and Entropies for Metal Ion Liriat Ether Interactions in Methanol Solution”, J. Org. Chem., 49, 5080 (1984)CrossRefGoogle Scholar
  11. 22.
    D.J. Cram, G.M. Lein, “Host Guest Complexation 36. Spherand and Lithium and Sodium ion Complexation Rates and Equilibria”, J. Am. Chem. Soc., 107, 3657 (1985)CrossRefGoogle Scholar


  1. 23.
    T. Nabeshima, T. Inaba, N. Furukawa, T. Hosoya, Y. Yano, “Artificial Allosteric Ionophores — Regulation of Ion Recognition of Polyethers Bearing Bipyridine Moieties by Copper(I)”, Inorg. Chem., 32, 1407 (1993)CrossRefGoogle Scholar
  2. 24.
    S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu, O. Manabe, “Photoresponsive Crown Ether 2. Photocontrol of Ion Extraction and Ion-Transport by a Bis(Crown Ether) with a Butterfly-Like Motion”, J. Am. Chem. Soc., 103, 111 (1981)CrossRefGoogle Scholar
  3. 25.
    T. Nabeshima, A. Sakiyama, A. Yagyu, H. Furukawa, “Synthesis of Novel Biscrown Ethers with Interconvertible Redox Structures”, Tetrahedron Lett., 30, 5287 (1989)CrossRefGoogle Scholar
  4. 26.
    T. Nabeshima, H. Furusawa, Y. Yano, “Redox Control for the Recognition of Ag+ Ions in a Macrocycle Containing 2SH-Groups or S-S Bridge Inside the Cavity”, Angew. Chem. Int. Ed., 33, 1750 (1994)CrossRefGoogle Scholar
  5. 27.
    A.P. de Silva, S.A. de Silva, “Fluorescent Signaling Crown Ethers — Switching On of Fluorescence by Alkali-Metal Ion Recognition and Binding In Situ”, J. Chem. Soc., Chem. Commun., 1709 (1986)Google Scholar
  6. 28.
    A.P. de Silva, H.Q.N. Gunaratne, C.P. McCoy, “A Molecular Photonic AND Gate Based on Fluorescent Signaling”, Nature, 364, 42 (1993)CrossRefGoogle Scholar
  7. 29.
    A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, “Signaling Recognition Events with Fluorescent Sensors and Switches”, Chem. Rev., 97, 1515 (1997)CrossRefGoogle Scholar


  1. 30.
    E.B. Kyba, J. Koga, L.R. Sousa, M.G. Siegel, D.J. Cram, “Chiral Recognition in Molecular Complexing”, J. Am. Chem. Soc., 95, 2692 (1973)CrossRefGoogle Scholar
  2. 31.
    D.J. Cram, J.M. Cram, “Design of Complexes between Synthetic Hosts and Organic Guest”, Acc. Chem. Res., 11, 8 (1978)CrossRefGoogle Scholar
  3. 32.
    D.J. Cram, G.D.Y. Sogah, “Chiral Crown Complexes Catalyze Michael Addition-Reactions to Give Adducts in High Optical Yields”, J. Chem. Soc., Chem. Commun., 625 (1981)Google Scholar


  1. 33.
    B. Dietrich, J. Guilhem, J.M. Lehn, C. Pascard, E. Sonveaux, “Molecular Recognition in Anion Coordination Chemistry — Structure, Binding Constants and Receptor-Substrate Complimentarity of a Series of Anion Cryptates of a Macrobicyclic Receptor Molecule”, Helv. Chim. Acta, 67, 91 (1984)CrossRefGoogle Scholar
  2. 34.
    Y. Umezawa, M. Kataoka, W. Takami, E. Kimura, T. Koike, H. Nada, “Potentiometric Adenosine-Triphosphate Polyanion Sensor Using a Lipophilic Macrocyclic Polyamine Liquid Membrane”, Anal. Chem., 60, 2392 (1988)CrossRefGoogle Scholar
  3. 35.
    C.M. Carey, W.B. Riggan, “Cyclic Polyamine Ionophore for Use in a Dibasic Phosphate-Selective Electrode”, Anal. Chem., 66, 3587 (1994)CrossRefGoogle Scholar
  4. 36.
    M.W. Hossaini, J.-M. Lehn, L. Maggiora, K.B. Mertes, M.P. Mertes, “Supramolecular Catalysis in the Hydrolysis of ATP Facilitated by Macrocyclic Polyamines: Mechanistic Studies”, J. Am. Chem. Soc., 109, 537 (1987)CrossRefGoogle Scholar
  5. 37.
    M.W. Hosseini, J.M. Lehn, “Supramolecular Catalysis of Adenosine-Triphosphate Synthesis in Aqueous-Solution Mediated by a Macrocyclic Polyamine and Divalent Metal-Cations”, J. Chem. Soc., Chem. Commun., 451 (1991)Google Scholar
  6. 38.
    E. Kimura, “Model Studies for Molecular Recognition of Carbonic Anhydrase and Carboxypeptidase”, Acc. Chem. Res., 34, 171 (2001)CrossRefGoogle Scholar
  7. 39.
    S.R. Cooper, “Crown Thioether Chemistry”, Acc. Chem. Res., 21, 141 (1988)CrossRefGoogle Scholar


  1. 40.
    K.A. Connors, “The Stability of Cyclodextrin Complexes in Solution”, Chem. Rev., 97, 1325 (1997)CrossRefGoogle Scholar
  2. 41.
    J. Szejtli, “Introduction and General Overview of Cyclodextrin Chemistry”, Chem. Rev., 98, 1743 (1998)CrossRefGoogle Scholar
  3. 42.
    M.V. Rekharsky, Y. Inoue, “Complexation Thermodynamics of Cyclodextrins”, Chem. Rev., 98, 1875 (1998)CrossRefGoogle Scholar
  4. 43.
    A. Ueno, T. Kuwabara, A. Nakamura, F. Toda, “A Modified Cyclodextrin as a Guest Responsive Color-Change Indicator”, Nature, 356, 136 (1992)CrossRefGoogle Scholar
  5. 44.
    S. Minato, T. Osa, M. Morita, A. Nakamura, H. Ikeda, F. Toda, A. Ueno, “Intramolecular Excimer Formation and Molecular Recognition of Modified Cyclodextrins Appended by Two Naphthalene Rings”, Photochem. Photobiol., 54, 593 (1991)Google Scholar
  6. 45.
    R. Breslow, “Artificial Enzymes”, Science, 218, 532 (1982)Google Scholar
  7. 46.
    R. Breslow, “Biomimetic Chemistry and Artificial Enzymes — Catalysis by Design”, Acc. Chem. Res., 28, 146 (1995)CrossRefGoogle Scholar
  8. 47.
    K. Takahashi, “Organic Reactions Mediated by Cyclodextrins”, Chem. Rev., 98, 2013(1998)CrossRefGoogle Scholar
  9. 48.
    V. Luzhkov, J. Åqvist, “Computer Simulation of Phenyl Ester Cleavage by β-Cyclodextrin in Solution”, J. Am. Chem. Soc., 120, 6131 (1998)CrossRefGoogle Scholar


  1. 49.
    C.D. Gutsche, “Calixarenes”, Acc. Chem. Res., 16, 161 (1983)CrossRefGoogle Scholar
  2. 50.
    A. Ikeda, S. Shinkai, “Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding”, Chem. Rev., 97, 1713 (1997)CrossRefGoogle Scholar
  3. 51.
    M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, “Molecular Design of Artificial Molecular and Ion Recognition Systems with Allosteric Guest Responses”, Acc. Chem. Res., 34, 865 (2001)CrossRefGoogle Scholar
  4. 52.
    A.F.D. de Namor, R.M. Cleverley, M.L. Zapata-Ormachea, “Thermodynamics of Calixarene Chemistry”, Chem. Rev., 98, 2495 (1998)CrossRefGoogle Scholar
  5. 53.
    P.D. Beer, “Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species”, Acc. Chem. Res., 31, 71 (1998)CrossRefGoogle Scholar
  6. 54.
    T. Suzuki, K. Nakashima, S. Shinkai, “Very Convenient and Efficient Purification Method for Fullerene (C60) with 5,11,17,23,29,35,41,47-Octa-Tert-Butylcalix[8]arene-49,50,51,52,53,54,55,56-Octol”, Chem. Lett., 699 (1994)Google Scholar
  7. 55.
    J.L. Atwood, G.A. Koutsantonis, C.L. Raston, “Purification of C60 and C70 by Selective Complexation with Calixarenes”, Nature, 368, 229 (1994)CrossRefGoogle Scholar
  8. 56.
    H. Yamamoto, S. Shinkai, “Molecular Design of Calix[4]arene-Based Sodium-Selective Electrodes Which Show Remarkably High 105.0–105.3 Sodium/Potassium Selectivity”, Chem. Lett., 1115 (1994)Google Scholar
  9. 57.
    Y. Kubo, S. Maeda, S. Tokita, M. Kubo, “Colorimetric Chiral Recognition by a Molecular Sensor”, Nature, 382, 522 (1996)CrossRefGoogle Scholar


  1. 58.
    F. Diederich, “Complexation of Neutral Molecules by Cyclophane Hosts”, Angew. Chem. Int. Ed., 27, 362 (1988)CrossRefGoogle Scholar
  2. 59.
    K. Odashima, A. Itai, Y. Iitaka, K. Koga, “Host-Guest Complex Formation between a Water-Soluble Polyparacyclophane and a Hydrophobic Guest Molecule”, J. Am. Chem. Soc., 102, 2504 (1980)CrossRefGoogle Scholar
  3. 60.
    L.R. MacGillivray, J.L. Atwood, “Structural Classification and General Principles for the Design of Spherical Molecular Hosts”, Angew. Chem. Int. Ed., 38, 1018 (1999)CrossRefGoogle Scholar
  4. 61.
    K. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, J. Kikuchi, “Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air-Water Interface”, J. Am. Chem. Soc., 122, 7835 (2000)CrossRefGoogle Scholar
  5. 62.
    K. Ariga, R. Tanaka, N. Takagi, J. Kikuchi, “Molecular Recognition by Cyclophane/Guanidinium Supramolecular Receptor Embedded at the Air-Water Interface”, Supramol. Chem., 15, 87 (2003)CrossRefGoogle Scholar
  6. 63.
    K. Ariga, D. Sakai, T. Ogata, J. Kikuchi, “Molecular Recognition by Wall-Assembling-Type Nanocavity in Aqueous Media”, J. Nanosci. Nanotech., 2, 41 (2002).CrossRefGoogle Scholar
  7. 64.
    K. Ariga, T. Nakanishi, Y. Terasaka, H. Tsuji, D. Sakai, J. Kikuchi, “Piezoluminescence at the Air-Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application”, Langmuir, 21, 976 (2005)CrossRefGoogle Scholar
  8. 65.
    D. Whang, J. Heo, J.H. Park, K. Kim, “A Molecular Bowl with Metal Ion as Bottom: Reversible Inclusion of Organic Molecules in Cesium Ion Complexed Cucurbituril”, Angew. Chem. Int. Ed., 37, 78 (1998)CrossRefGoogle Scholar
  9. 66.
    P.A. Gale, J.L. Sessler, A. Král, “Calixpyrroles”, Chem. Commun., 1 (1998)Google Scholar
  10. 67.
    R.C. Helgeson, C.B. Knobler, D.J. Cram, “Correlations of Structure with Binding Ability Involving Nine Hemicarcerand Hosts and Twenty-Four Guests”, J. Am. Chem. Soc., 119, 3229 (1997)CrossRefGoogle Scholar
  11. 68.
    Y. Murakami, O. Hayashida, “Supramolecular Effects and Molecular Discrimination by Macrocyclic Hosts Embedded in Synthetic Bilayer Membranes”, Proc. Natl. Acad. Sci. USA, 90, 1140 (1993)CrossRefGoogle Scholar
  12. 69.
    A.E. Rowan, J. A.A.W. Elemans, R.J.M. Nolte, “Molecular and Supramolecular Objects from Glycoluril”, Acc. Chem. Res., 32, 995 (1999)CrossRefGoogle Scholar
  13. 70.
    F. Hof, S.L. Craig, C. Nuckolls, J. Rebek, Jr., “Molecular Encapsulation”, Angew. Chem. Int. Ed., 41, 1488 (2002)CrossRefGoogle Scholar
  14. 71.
    J. Rebek, Jr., “Reversible Encapsulation and Its Consequences in Solution”, Acc. Chem. Res., 32, 278 (1999)CrossRefGoogle Scholar
  15. 72.
    R. Warmuth, “o-Benzyne: Strained Alkyne or Cumulene? NMR Characterization in a Molecular Container”, Angew. Chem. Int. Ed., 36 1347 (1997)CrossRefGoogle Scholar


  1. 73.
    J.-M. Lehn, “Supramolecular Chemistry — Scope and Perspectives: Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)”, Angew. Chem. Int. Ed., 27, 89 (1988)CrossRefGoogle Scholar
  2. 74.
    J. Rebek, B. Askew, M. Killoran, D. Nemeth, F.T. Lin, “Convergent Functional Groups 3. A Molecular Cleft Recognizes Substrates of Complementary Size, Shape, and Functionality”, J. Am. Chem. Soc., 109, 2426 (1987)CrossRefGoogle Scholar
  3. 75.
    A. Galan, D. Andreu, A. M. Echavareen, P. Pradosp, P. Prados, J. de Mendoza, “A Receptor for the Enantioselective Recognition of Phenylalanine and Tryptophan under Neutral Conditions”, J. Am. Chem. Soc., 114, 1511 (1992)CrossRefGoogle Scholar
  4. 76.
    J.J. Lavigne, E.V. Anslyn, “Sensing a Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors”, Angew. Chem. Int. Ed., 40, 3119 (2001)CrossRefGoogle Scholar
  5. 77.
    P.D. Beer, P.A. Gale, “Anion Recognition and Sensing: The State of the Art and Future Perspectives”, Angew. Chem. Int. Ed., 40, 487 (2001)CrossRefGoogle Scholar
  6. 78.
    H. Furuta, D. Magda, J.L. Sessler, “Molecular Recognition via Base Pairing: Amine-Containing, Cytosine-Based Ditopic Receptors That Complex Guanosine Monophosphate”, J. Am. Chem. Soc., 113, 978 (1991)CrossRefGoogle Scholar
  7. 79.
    T.D. James, K. R.A.S. Sandanayake, S. Shinkai, “Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor”, Nature, 374, 345 (1995)CrossRefGoogle Scholar
  8. 80.
    M.W. Peczuh, A.D. Hamilton, “Peptide and Protein Recognition by Designed Molecules”, Chem. Rev., 100, 2479 (2000)CrossRefGoogle Scholar
  9. 81.
    K. Ariga, E.V. Anslyn, “Manipulating the Stoichiometry and Strength of Phosphodiester Binding to a Bisguanidine Cleft in DMSO/Water Solutions”, J. Org. Chem., 57, 417 (1992)CrossRefGoogle Scholar
  10. 82.
    D.M. Kneeland, K. Ariga, V.M. Lynch, C.Y. Huang, E.V. Anslyn, “Bis(alkylguanidinium) Receptors for Phosphodiesters: Effect of Counterions, Solvent Mixtures, and Cavity Flexibility on Complexation”, J. Am. Chem. Soc., 115, 10042 (1993)CrossRefGoogle Scholar
  11. 83.
    J. Smith, K. Ariga, E.V. Anslyn, “Enhanced Imidazole-Catalyzed RNA Cleavage Induced by a Bis-Alkylguanidinium Receptor”, J. Am. Chem. Soc., 115, 362 (1993)CrossRefGoogle Scholar
  12. 84.
    J. Rebek, Jr., “Molecular Recognition and Biophysical Organic Chemistry”, Acc. Chem. Res., 23, 399 (1990)CrossRefGoogle Scholar
  13. 85.
    E.A. Wintner, M.M. Conn, J. Rebek, Jr., “Studies in Molecular Replication”, Acc. Chem. Res., 27, 198 (1994)CrossRefGoogle Scholar


  1. 86.
    K. Ariga, T. Kunitake, “Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction”, Acc. Chem. Res, 31(6), 371 (1998)CrossRefGoogle Scholar
  2. 87.
    R.U. Lemieux, “How Water Provides the Impetus for Molecular Recognition in Aqueous Solution”, Acc. Chem. Res., 29, 373 (1996)CrossRefGoogle Scholar
  3. 88.
    M. Sakurai, H. Tamagawa, Y. Inoue, K. Ariga, T. Kunitake, “Theoretical Study of Intermolecular Interaction at the Lipid-Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory”, J. Phys. Chem. B, 101, 4810 (1997)CrossRefGoogle Scholar
  4. 89.
    H. Tamagawa, M. Sakurai, Y. Inoue, K. Ariga, T. Kunitake, “Theoretical Study of Intermolecular Interaction at the Lipid-Water Interface. 2. Analysis Based on the Poisson-Boltzmann Equation”, J. Phys. Chem. B, 101, 4817 (1997)CrossRefGoogle Scholar
  5. 90.
    D.Y. Sasaki, K. Kurihara, T. Kunitake, “Specific Multi-Point Binding of ATP and AMP to a Guanidinium-Functionalized Monolayer”, J. Am. Chem. Soc., 113, 9685 (1991)CrossRefGoogle Scholar
  6. 91.
    M. Onda, K. Yoshihara, H. Koyano, K. Ariga, T. Kunitake, “Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces”, J. Am. Chem. Soc., 118, 8524 (1996)CrossRefGoogle Scholar
  7. 92.
    C.M. Paleos, D. Tsiourvas, “Molecular Recognition of Organized Assemblies via Hydrogen Bonding in Aqueous Media”, Adv. Mater., 9, 695 (1997)CrossRefGoogle Scholar


  1. 93.
    H. Kitano, H. Ringsdorf, “Surface Behaviors of Nucleic Acid Base-Containing Lipids in Monolayer and Bilayer Systems”, Bull. Chem. Soc. Jpn., 58, 2826 (1985)CrossRefGoogle Scholar
  2. 94.
    K. Kurihara, K. Ohto, Y. Honda, T. Kurihara, “Efficient, Complementary Binding of Nucleic-Acid Bases to Diaminotriazine-Functionalized Monolayers on Water”, J. Am. Chem. Soc., 113, 5077 (1991)CrossRefGoogle Scholar
  3. 95.
    T. Kawahara, K. Kurihara, T. Kunitake, “Cooperative Binding of Adenine via Complementary Hydrogen-Bonding to an Imide Functionalized Monolayer at the Air-Water Interface”, Chem. Lett., 1839 (1992)Google Scholar
  4. 96.
    Y. Okahata, M. Kawase, K. Niikura, F. Ohtake, H. Furusawa, Y. Ebara, “Kinetic Measurements of DNA Hybridisation on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance”, Anal. Chem., 70, 1288 (1998)CrossRefGoogle Scholar
  5. 97.
    M. Shimomura, F. Nakamura, K. Ijiro, H. Taketsuna, M. Tanaka, H. Nakamura, K. Hasebe, “Two-Dimensional DNA-Mimetic Molecular Organizations at the Air-Water Interface”, J. Am. Chem. Soc., 119, 2341 (1997)CrossRefGoogle Scholar
  6. 98.
    W.G. Miao, X.Z. Du, Y.Q. Liang, “Molecular Recognition of Nucleolipid Monolayers of 1-(2-Octadecyloxycarbonylethyl)cytosine to Guanosine at the Air-Water Interface and Langmuir-Blodgett Films”, Langmuir, 19, 5389 (2003)CrossRefGoogle Scholar
  7. 99.
    Y. Ikeura, K. Kurihara, T. Kunitake, “Molecular Recognition at the Air-Water Interface. Specific Binding of Nitrogen Aromatics and Amino Acids by Monolayers of Long-Chain Derivatives of Kemp Acid”, J. Am. Chem. Soc., 113, 7342 (1991)CrossRefGoogle Scholar
  8. 100.
    K. Kurihara, K. Ohto, Y. Tanaka, Y. Aoyama, T. Kunitake, “Molecular Recognition of Sugars by Monolayers of Resorcinol Dodecanal Cyclotetramer”, J. Am. Chem. Soc., 113, 444 (1991)CrossRefGoogle Scholar
  9. 101.
    H. Koyano, P. Bissel, K. Yoshihara, K. Ariga, T. Kumitake, “Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid”, Chem. Eur. J., 3, 1077 (1997)Google Scholar
  10. 102.
    Q. Huo, K.C. Russell, R.M. Reblanc, “Effect of Complementary Hydrogen Bonding Additives in Subphase on the Structure and Properties of the 2-Amino-4,6-Dioctadecylamino-1,3,5-Triazine Amphiphile at the Air-Water Interface: Studies by Ultraviolet-Visible Absorption Spectroscopy and Brewster Angle Microscopy”, Langmuir, 14, 2174 (1998)CrossRefGoogle Scholar
  11. 103.
    X. Cha, K. Ariga, M. Onda, T. Kunitake, “Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface”, J. Am. Chem. Soc., 117, 11833 (1995)CrossRefGoogle Scholar
  12. 104.
    X. Cha, K. Ariga, T. Kunitake, “Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers”, J. Am. Chem. Soc., 118, 9545 (1996)CrossRefGoogle Scholar
  13. 105.
    K. Ariga, A. Kamino, X. Cha, T. Kunitake, “Multisite Recognition of Aqueous Dipeptides by Oligoglycine Arrays Mixed with Guanidinium and Other Receptor Units at the Air-Water Interface”, Langmuir, 15, 3875 (1999)CrossRefGoogle Scholar
  14. 106.
    D.Y. Sasaki, K. Kurihara, T. Kunitake, “Self-Assembled Miltifunctional Receptors for Nucleotides at the Air-Water Interface”, J. Am. Chem. Soc., 114, 10994 (1992)CrossRefGoogle Scholar
  15. 107.
    K. Taguchi, K. Ariga, T. Kunitake, “Multi-Site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water”, Chem. Lett., 701 (1995)Google Scholar
  16. 108.
    K. Ariga, A. Kamino, H. Koyano, T. Kunitake, “Recognition of Aqueous Flavin Mononucleotide on the Surface of Binary Monolayers of Guanidinium and Melamine Amphiphiles”, J. Mater. Chem., 7, 1155 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations