Guembelitria irregularis Bloom at the K-T Boundary: Morphological Abnormalities Induced by Impact-related Extreme Environmental Stress?

  • Rodolfo Coccioni
  • Valeria Luciani
Part of the Impact Studies book series (IMPACTSTUD)


The planktonic foraminiferal species Guembelitria irregularis displays an aberrant test due to the irregular disposition and growth of the chambers which suggest a morphological malformation. Available data across the Cretaceous-Tertiary (K-T) transition from three Tunisian sections (El Kef II, Elles II, Ain Settara) and Kazakhstan (Koshak) and new data from Spain (Caravaca), and Italy (Erto), show a dramatic and remarkable increase in abundance of G. irregularis (up to 93% at El Kef II) in the small 38–63 µm fraction of the assemblages from the lower Danian planktonic foraminiferal Zones P0-P1a. Positive peaks in the abundance of this form are also recorded in the latest Maastrichtian, even though with minor percentages (up to 16% at El Kef II). Fossil and Recent foraminiferal tests showing morphological abnormalities have long been reported from stressed environments. Accordingly, we speculate that the morphological abnormalities shown by the G. irregularis test across the K-T boundary are the result of the extremely stressful environmental conditions related to the complex interplay of different events (rapid and extreme climate fluctuactions, sea-level changes, intense volcanism, and impact events, which characterize the last hundreds of thousand of years of the Cretaceous and the beginning of the Danian. In particular, the post-K-T morphological abnormality of G. irregularis may be related to high stress conditions induced by the K-T impact.


Morphological Abnormality Mass Extinction Benthic Foraminifera Planktonic Foraminifera Foraminiferal Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovich S, Keller G (2002) High stress late Maastrichtian paleoenvironment: inference from planktonic foraminifera in Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 178: 145–164CrossRefGoogle Scholar
  2. Adatte T, Keller G, Burns S, Stoykova KH, Ivanov MI, Vangelov D, Kramer U, Stueben D (2002) Paleoenvironment across the Cretaceous-Tertiary transition in Eastern Bulgaria. In: Koeberl C, MacLeod KG (eds) Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, Colorado, Geological Society of America Special Paper 356: 231–251Google Scholar
  3. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108Google Scholar
  4. Alve E (1991) Benthic foraminifera in sediment cores reflecting heavy metal pollution in Sørfjord, Western Norway. Journal of Foraminiferal Research 21:1–19Google Scholar
  5. Alve E (1995) Benthic foraminifera response to estuarine pollution: a review. Journal of Foraminiferal Research 25: 190–203CrossRefGoogle Scholar
  6. Arz JA, Arenillas I, Molina E, Sepúlveda R (2000) La estabilidad evolutiva de los foraminiferos planctónicos en el Maastrichtiense Superior y su extinctión en el limite Cretácico/Terciario de Caravaca, España. Revista Geológica de Chile 27: 27–47Google Scholar
  7. Canudo JI, Keller G, Molina E (1991) Cretaceous/Tertiary extinction pattern and faunal turnover at Agost and Caravaca: S.E. Spain. Marine Micropaleontology 17: 319–341CrossRefGoogle Scholar
  8. Castellarin A (1979) Il problema dei raccorciamenti crostali del Sudalpino. Rendiconti della Società Geologica Italiana 1: 21–33Google Scholar
  9. Coccioni R (2000) Benthic foraminifera as bioindicators of heavy metal pollution. In: Martin RE (ed) Environmental Micropaleontology: The Application of Microfossils to Environmental Geology, Kluwer Academic/Plenum Publishers, New York, pp 71–103Google Scholar
  10. Coccioni R, Galeotti S (1994) K-T boundary extinction: geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera. Geology 22: 779–782CrossRefGoogle Scholar
  11. Denham CR, Scotese CR (1987) Terra Mobilis: A plate tectonic program for the Macintosh, version 1.1. Geoimages, Earth in Motion Technology, Austin, TX: 26 ppGoogle Scholar
  12. Doglioni C, Bosellini A (1987) Eoalpine and mesoalpine tectonis in the Southern Alps. Geologische Rundschau 77: 734–754Google Scholar
  13. Gerstel J, Thunell RC, Zachos JC, Arthur MA (1986) The Cretaceous/Tertiary boundary event in the North Pacific: planktonic foraminiferal results from Deep Sea Drilling Project Site 577, Shatsky Rise. Paleoceanography 1: 97–117CrossRefGoogle Scholar
  14. Geslin E, Debenay JP, Lesourd M (1998) Abnormal wall textures and test deformation in Ammonia (hyaline foraminifer). Journal of Foraminiferal Research 28: 148–156Google Scholar
  15. Geslin E, Stouff V, Debenay JP, Lesourd M. (2000) Environmental variation and foraminiferal test abnormalities. In: Martin RE (ed) Environmental Micropaleontology: The Application of Microfossils to Environmental Geology, Kluwer Academic/Plenum Publishers, New York, pp 191–215Google Scholar
  16. Geslin E, Debenay J-P, Dulela W, Bonetti C (2002) Morphological abnormalities of foraminiferal tests in Brazilian environments: comparison between polluted and non-polluted areas. Marine Micropaleontology 45: 151–168CrossRefGoogle Scholar
  17. Hildebrand AR, Penfield GT, Kring D, Pilkington M, Camargo A, Jacobsen SB, Boynton W (1991) Chicxulub crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19: 867–871CrossRefGoogle Scholar
  18. Keller G (1989) Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktonic foraminifera from Brazos River, Texas. Paleoceanography 4: 287–332Google Scholar
  19. Keller G (1993) The Cretaceous/Tertiary boundary transition in the Antartic Ocean and its global implications. Marine Micropaleontology 12: 1–45CrossRefGoogle Scholar
  20. Keller G (2001) The end-Cretaceous mass extinction in the marine realm: year 2000 assessment. Planetary and Space Science 49: 817–830CrossRefGoogle Scholar
  21. Keller G (2002) Guembelitria-dominated late Maastrichtian planktic foraminiferal assemblages mimic early Danian in central Egypt. Marine Micropaleontology 47: 71–99CrossRefGoogle Scholar
  22. Keller G (2003) Biotic effects of impacts and volcanism. Earth and Planetary Science Letters 215: 249–264CrossRefGoogle Scholar
  23. Keller G, Barrera E, Schmitz B, Matsson E (1993) Gradual mass extinction, species survivorship, and long term environmental changes across the Cretaceous-Tertiary boundary in high latitudes. Geological Society of America Bulletin 105: 979–997CrossRefGoogle Scholar
  24. Keller G, Li L, MacLeod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction?. Palaeogeography, Palaeoclimatology, Palaeoecology 119: 221–254CrossRefGoogle Scholar
  25. Keller G, Adatte T, Stinnesbeck W, Stüben D, Kramar U, Berner Z, Li L, von Salis Perch-Nielsen K (1998) The Cretaceous-Tertiary transition on the shallow Saharan platform of southern Tunisia. Geobios 30: 951–975CrossRefGoogle Scholar
  26. Keller G, Adatte T, Stinnesbeck W, Affolter M, Schilli L, Lopez-Oliva JG (2002a) Multiple spherule layers in the late Maastrichtian of northeastern Mexico. In: Koeberl C, MacLeod KG (eds), Catastrophic Events and Mass Extinctions: Impacts and Beyond, Boulder, Colorado, Geological Society of America Special Paper 356: 145–161Google Scholar
  27. Keller G, Adatte T, Stinnesbeck W, Luciani V, Karoui-Yaakoub N, Zaghbib-Turki D (2002b) Paleoecology of the Cretaceous-Tertiary mass extinction in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 178: 257–297Google Scholar
  28. Keller G, Adatte T, Stinnesbeck W, Rebolledo-Vieyra M, Urrutia Fucugauchi J, Kramar U, Stüben D (2004) Chicxulub impact predates the K-T boundary mass extinction. Proceedings of the National Academy of Sciences of the United States of America 101: 3753–3758.CrossRefGoogle Scholar
  29. Koeberl C, MacLeod KG (eds) (2002) Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, Colorado, Geological Society of America Special Paper 356, 746 ppGoogle Scholar
  30. Koutsoukos EAM (1996) The Cretaceous-Tertiary in NE Brazil; high resolution event stratigraphy. Anais da Academia Brasileira de Ciencias 68(2): 265–266Google Scholar
  31. Kroon D, Nederbragt AJ (1990) Ecology and Paleoecology of triserial planktic foraminifera. Marine Micropaleontology 16: 25–38CrossRefGoogle Scholar
  32. Liu C, Olsson RK (1992) Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research 22: 328–346Google Scholar
  33. Luciani V (l997) Planktonic foraminiferal turnover across the Cretaceous-Tertiary boundary in the Vajont valley (Southern Alps, northern Italy). Cretaceous Research 18: 799–821CrossRefGoogle Scholar
  34. Luciani V (2002) High resolution planktonic foraminiferal analysis from the Cretaceous/Tertiary boundary at Ain Settara (Tunisia): Evidence of an extended mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 178: 299–319CrossRefGoogle Scholar
  35. Morozova V.G. (1961) Datsko-Monskie Planktonye Foraminifery juga SSSR (Planktonic foraminifera from the Danian-Montian of the Southern Soviet Union). Akademia Nauk SSSR, Paleontologicheskiy Zhurnal 2: 8–19 (in russian)Google Scholar
  36. Olsson RK (1970) Paleocene planktonic foraminiferal biostratigraphy and Paleozoogeographic of New Jersey. Journal of Paleontology 44: 589–597Google Scholar
  37. Olsson RK, Liu C (1993) Controversies on the placement of the Cretaceous-Paleogene boundary and the K/T mass extinction of planktonic foraminifera. Palaios 8: 127–139Google Scholar
  38. Pardo A, Keller G (1999) Aspectos paeoceanográficos y paleoecológicos del lÍmite Cretácico/Terciario en la peninsula de Mangyshlak (Kazakstán): inferencias a partir de foraminÍferos planctónicos. Revista Española de Micropaleontologia 31: 265–278Google Scholar
  39. Pardo A, Ortiz N, Keller G (1996) Latest Maastrichtian and K/T boundary foraminiferal turnover and environmental changes at Agost, Spain. In: MacLeod N, Keller G (eds), Biotic and Environmental Events across the Cretaceous/Tertiary Boundary, Norton, New York, pp 139–171Google Scholar
  40. Pardo A, Adatte T, Keller G, Oberhänsli H (1999) Paleoenvironmental changes across the Cretaceous-Tertiary boundary at Koshak, Kazakhstan, based on planktic foraminifera and clay mineralogy. Palaeogeography, Palaeoclimatology, Palaeoecology 154: 247–273CrossRefGoogle Scholar
  41. Pope KO, Ocampo A, Duller D (1991) Mexican site for the K/T crater? Nature 351: 105CrossRefGoogle Scholar
  42. Ravizza G, Peucker-Ehrenbrink B (2003) Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. Science 302: 1392–1395CrossRefGoogle Scholar
  43. Rögl F, Salis Kv, Preisinger A, Aslanian S, Summesberger H (1996) Stratigraphy across the Cretaceous/Paleogene boundary near Bjala, Bulgaria. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, Mémoire 16: 673–683Google Scholar
  44. Ryder G, Fastovsky D, Gartner S (eds) (1996) The Cretaceous-Tertiary event and other catastrophes in earth history. Boulder, Colorado, Geological Society of America Special Paper 307, 569 ppGoogle Scholar
  45. Samir AM (2000) The response of benthic foraminifera and ostracods to various pollution sources: a study from two lagoons in Egypt. Journal of Foraminiferal Research 30: 83–98CrossRefGoogle Scholar
  46. Sarkar A, Bhattacharya SK, Shukla PN, Bhandaru N, Naidin D (1992) Highresolution profile of stable isotopes and iridium across a K/T boundary section from Kyzylsai Hill, Mangyslak, Kazakhstan. Terra Nova 5: 585–590Google Scholar
  47. Sharpton V, Ward P (eds) (1990) Global catastrophes in earth history: An interdisciplinary conference on impacts, volcanism, and mass mortality. Boulder, Colorado, Geological Society of America Special Paper 247, 631 ppGoogle Scholar
  48. Smit J (1982) Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Boulder, Colorado, Geological Society of America Special Paper 190: 329–352Google Scholar
  49. Stouff V, Debenay JP, Lesourd M. (1999a) Origin of double and multiple tests in benthic foraminifera: observations in laboratory cultures. Marine Micropaleontology 36: 189–204CrossRefGoogle Scholar
  50. Stouff V, Geslin E, Debenay JP, Lesourd M (1999b) Origin of morphological abnormalities in Ammonia (foraminifera): studies in laboratory and natural environments. Journal of Foraminiferal Research 29: 152–170Google Scholar
  51. Swisher CC III, Grajales-Nishimura JM, Montanari A, Margolis SV, Claeys P, Alvarez W, Renne P, Cedilo-Pardo E, Maurrasse FJ-MR, Curtis GH, Smit J, McWilliams MO (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257: 954–958Google Scholar
  52. Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35: 41–78CrossRefGoogle Scholar
  53. Yanko V, Kronfeld J, Flexer A (1994) Response of benthic foraminifera to various pollution sources: implications for pollution monitoring. Journal of Foraminiferal Research 24: 1–17CrossRefGoogle Scholar
  54. Yanko V, Ahmad M, Kaminski MA (1998) Morphological deformities of benthic foraminiferal tests in response to pollution by heavy metals: implications for pollution monitoring. Journal of Foraminiferal Research 28: 177–200Google Scholar
  55. Yanko V, Arnold A, Parker W (2000) Effects of marine pollution on benthic foraminifera. In: Sen Gupta BK (ed) Modern Foraminifera, Kluwer Academic Publishers, Dordrecht, pp 217–235Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rodolfo Coccioni
    • 1
  • Valeria Luciani
    • 2
  1. 1.Istituto di Geologia e Centro di Geobiologia dell’Università “Carlo Bo”UrbinoItaly
  2. 2.Dipartimento di Scienze della Terra dell’UniversitàFerraraItaly

Personalised recommendations